K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

nhanh lên các bạn ơi

 

15 tháng 10 2023

D= 1+4+42+43+...+458 +459 ⋮ 21

D= (1+4+42)+(43+44+45)+...(457+458+459)

D= (1+4+42)+43.(1+4+42)+...+457.(1+4+42)

D= 21+43.21+....+457.21 ⋮ 21

=>D= 1+4+42+43+...+458 +459 ⋮ 21

 

17 tháng 12 2021

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

16 tháng 10 2016

4A=4+4^2+4^3+.....+4^60

4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)

3A=4^60-1

A=\(\frac{4^{60}-1}{3}\)

4 tháng 8 2017

e hình như bạn giải lạc đề rồi

17 tháng 12 2021

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)

A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)

A=5+42.5+...+448.5A=5+42.5+...+448.5

A=5(1+42+...+448)A=5(1+42+...+448)

⇒A⋮5

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
k cho mik đi mik cảm ơn

29 tháng 10 2018

Chia hết cho 5

(1+4)+(4^2+4^3)+...+(4^58+4^59)

=5+4^2(1+4)+...+4^58(1+4)

=5+4^2.5+...+4^58.5

=5(1+4^2+...+4^58)chia hết cho 5

Chia hết cho 21;85 làm tương tự 

Chia hết cho 21 nhóm 3 số nhé

Chia hết cho 85 nhóm 4 số nhé 

11 tháng 11 2021

\(A=1+4+4^2+...+4^{59}\)

\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(A=\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)

\(A=5+4^2.5+...+4^{48}.5\)

\(A=5\left(1+4^2+...+4^{48}\right)\)

\(\Rightarrow A⋮5\)

11 tháng 11 2021

\(A=1+4+4^2+...+4^{59}\)

\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

\(A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{47}\left(1+4+4^2\right)\)

\(A=21+4^3.21+...+4^{47}.21\)

\(A=21\left(1+4^3+...+4^{47}\right)\)

\(\Rightarrow A⋮21\)

8 tháng 8 2017

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(A=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(A=5+4^2.5+...+4^{58}.5\) 

\(A=5.\left(1+4^2+...+4^{58}\right)\)\(⋮\) \(5\)

Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 5.

.

.

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{56}+4^{57}+4^{58}\right)\)

\(A=21+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)

\(A=21+4^3.21+...+4^{57}.21\)

\(A=21.\left(1+4^3+...+4^{57}\right)\) \(⋮\) \(21\)

Vậy  \(A=1+4+4^2+...+4^{58}+4^{59}\)  chia hết cho 21.

( Số 21 là do tổng của \(\left(1+4+4^2\right)\)cộng thành nha  )