Chứng minh 3^(4n+1)+2.5^(2n+2)-21 chia hết cho 64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
A=3^(2n+3)+2(4n+1)chia hết cho 25 có thể dùng pp như phần a để giải phần này tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) Pp lựa chọn phần dư: A=3^(2n+3)+2^(4n+1) gọi 3^(2n+3)=B,2^(4n+1)=C n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 C=2^5=32 chia 25 dư 7 B+C chia 25 dư bằng 18+7chia 25 dư 0 giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Bạn xem lại đề. Với $n=2$ thì biểu thức không chia hết cho 64.