cho A= \(\frac{x}{x-3}\)
B= \(\frac{x^2+3}{x^2-9}+\frac{1}{x+3}\)
- a, tính gt của A tại x# 3, x # -3
- b, CMR S=B: A= \(\frac{X+1}{X+3}\)khi x # 3 , x#-3 , x# 0
- c, tìm x để S=B:A =\(\frac{1}{3}\)
- D, TÌM X thuocj Z để S = B:A thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
Bài 1: Sửa đề: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Thay x=49 vào biểu thức \(A=\frac{\sqrt{x}+3}{\sqrt{x}-1}\), ta được:
\(A=\frac{\sqrt{49}+3}{\sqrt{49}-1}=\frac{7+3}{7-1}=\frac{10}{6}=\frac{5}{3}\)
Vậy: Khi x=49 thì \(A=\frac{5}{3}\)
b) Sửa đề: Rút gọn biểu thức B
Ta có: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\cdot\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c) Ta có: \(\frac{B}{A}=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+3}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
Để \(\frac{B}{A}< \frac{3}{4}\) thì \(\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}-\frac{3}{4}< 0\)
\(\Leftrightarrow\frac{4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)}{4\sqrt{x}\left(\sqrt{x}+3\right)}< 0\)
mà \(4\sqrt{x}\left(\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ
nên \(4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)< 0\)
\(\Leftrightarrow4x-4-3x-9\sqrt{x}< 0\)
\(\Leftrightarrow x-9\sqrt{x}-4< 0\)
\(\Leftrightarrow x^2-9x-4< 0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{9}{2}+\frac{81}{4}-\frac{97}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2< \frac{97}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{9}{2}>-\frac{\sqrt{97}}{2}\\x-\frac{9}{2}< \frac{\sqrt{97}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{9-\sqrt{97}}{2}\\x< \frac{9+\sqrt{97}}{2}\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được:
\(3< x< \frac{9+\sqrt{97}}{2}\)
1/ Thay x=-4 vao A -> A= \(\frac{-4}{-4+3}\)= 4
2/ B=\(\frac{2}{x-3}\)+\(\frac{x-15}{x^2-9}\)
B= \(\frac{2\left(x+3\right)+x-15}{\left(x-3\right)\left(x+3\right)}\)
B= \(\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3}{x+3}\)
c, B>A <=> \(\frac{3}{x+3}\)> \(\frac{x}{x+3}\)
<=> \(\frac{3}{x+3}\)- \(\frac{x}{x+3}\)> 0
<=> \(\frac{3-x}{x+3}\)>0
<=> 3-x <0 / >0 ( Đkxd x khác -3 )
x+3 <0 / >0
..............
...............................
Vậy ...
1) \(A=\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
Với x = -4 ( tmđk ) thì giá trị của A là
\(A=\frac{-4}{-4+3}=\frac{-4}{-1}=4\)
2) \(B=\frac{2}{x-3}+\frac{x-15}{x^2-9}\)( ĐKXĐ : \(x\ne\pm3\))
\(B=\frac{2}{x-3}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
3) Để B > A
=> \(\frac{3}{x+3}>\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
<=> \(\frac{3}{x+3}-\frac{x}{x+3}>0\)
<=> \(\frac{3-x}{x+3}>0\)
Xét hai trường hợp :
1.\(\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-3\\x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}\Leftrightarrow-3< x< 3\)( tmđk )
2. \(\hept{\begin{cases}3-x< 0\\x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -3\\x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}}\)( loại )
Vì x nguyên => x ∈ { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }
Vậy ...
a) \(ĐKXĐ:x\ne\pm3\)
b) \(A=\left(\frac{x}{x+3}+\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{x^2-9}\right):\frac{3}{x+3}\)
\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\left(x+3\right)\left(x^2-9\right)}\right):\frac{3}{x+3}\)
\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{x^2+3x+9}{\left(x+3\right)^2}\right):\frac{3}{x+3}\)
\(\Leftrightarrow A=\frac{x^2+3x-x^2-3x-9}{\left(x+3\right)^2}:\frac{3}{x+3}\)
\(\Leftrightarrow A=\frac{-9\left(x+3\right)}{3\left(x+3\right)^2}\)
\(\Leftrightarrow A=\frac{-3}{x+3}\)
c) Tại \(x=-\frac{1}{2}\)
\(\Leftrightarrow A=\frac{-3}{-\frac{1}{2}+3}\)
\(\Leftrightarrow A=\frac{-6}{5}\)
d) Để \(A>0\)
\(\Leftrightarrow\frac{-3}{x+3}>0\)
\(\Leftrightarrow x+3< 0\)(Vì -3 < 0)
\(\Leftrightarrow x< -3\)
e) +) Với \(A>\frac{-1}{2}\)
\(\Leftrightarrow\frac{-3}{x+3}>-\frac{1}{2}\)
\(\Leftrightarrow-6>-x-3\)
\(\Leftrightarrow x>3\)(tm)
+) Với \(A< -\frac{1}{2}\)
\(\Leftrightarrow\frac{-3}{x+3}< -\frac{1}{2}\)
\(\Leftrightarrow-6< -x-3\)
\(\Leftrightarrow x< 3\)(chú ý : \(x\ne-3\))
+) Với \(A=-\frac{1}{2}\)
\(\Leftrightarrow-\frac{3}{x+3}=-\frac{1}{2}\)
\(\Leftrightarrow x+3=6\)
\(\Leftrightarrow x=3\)(ktm)
Vậy \(\orbr{\begin{cases}A>-\frac{1}{2}\\A< -\frac{1}{2}\end{cases}}\)