K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x2+6c+9(c ở đâu vậy bạn)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

Bài 1: Sửa đề: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Thay x=49 vào biểu thức \(A=\frac{\sqrt{x}+3}{\sqrt{x}-1}\), ta được:

\(A=\frac{\sqrt{49}+3}{\sqrt{49}-1}=\frac{7+3}{7-1}=\frac{10}{6}=\frac{5}{3}\)

Vậy: Khi x=49 thì \(A=\frac{5}{3}\)

b) Sửa đề: Rút gọn biểu thức B

Ta có: \(B=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\cdot\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)

c) Ta có: \(\frac{B}{A}=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

Để \(\frac{B}{A}< \frac{3}{4}\) thì \(\frac{x-1}{\sqrt{x}\left(\sqrt{x}+3\right)}-\frac{3}{4}< 0\)

\(\Leftrightarrow\frac{4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)}{4\sqrt{x}\left(\sqrt{x}+3\right)}< 0\)

\(4\sqrt{x}\left(\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ

nên \(4\left(x-1\right)-3\sqrt{x}\left(\sqrt{x}+3\right)< 0\)

\(\Leftrightarrow4x-4-3x-9\sqrt{x}< 0\)

\(\Leftrightarrow x-9\sqrt{x}-4< 0\)

\(\Leftrightarrow x^2-9x-4< 0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{9}{2}+\frac{81}{4}-\frac{97}{4}< 0\)

\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2< \frac{97}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{9}{2}>-\frac{\sqrt{97}}{2}\\x-\frac{9}{2}< \frac{\sqrt{97}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{9-\sqrt{97}}{2}\\x< \frac{9+\sqrt{97}}{2}\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được:

\(3< x< \frac{9+\sqrt{97}}{2}\)

10 tháng 9 2020

1/ Thay x=-4 vao A -> A= \(\frac{-4}{-4+3}\)= 4 
2/ B=\(\frac{2}{x-3}\)+\(\frac{x-15}{x^2-9}\)
B= \(\frac{2\left(x+3\right)+x-15}{\left(x-3\right)\left(x+3\right)}\)
B= \(\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)=  \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)\(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)\(\frac{3}{x+3}\)
c, B>A <=> \(\frac{3}{x+3}\)\(\frac{x}{x+3}\)
<=> \(\frac{3}{x+3}\)\(\frac{x}{x+3}\)> 0
<=> \(\frac{3-x}{x+3}\)>0
<=> 3-x <0  / >0           ( Đkxd x khác -3 )
       x+3 <0 / >0
.............. 
...............................

Vậy ...

10 tháng 9 2020

1) \(A=\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))

Với x = -4 ( tmđk ) thì giá trị của A là

\(A=\frac{-4}{-4+3}=\frac{-4}{-1}=4\)

2) \(B=\frac{2}{x-3}+\frac{x-15}{x^2-9}\)( ĐKXĐ : \(x\ne\pm3\))

\(B=\frac{2}{x-3}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)

3) Để B > A

=> \(\frac{3}{x+3}>\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))

<=> \(\frac{3}{x+3}-\frac{x}{x+3}>0\)

<=> \(\frac{3-x}{x+3}>0\)

Xét hai trường hợp :

1.\(\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-3\\x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}\Leftrightarrow-3< x< 3\)( tmđk )

2. \(\hept{\begin{cases}3-x< 0\\x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -3\\x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}}\)( loại )

Vì x nguyên => x ∈ { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }

Vậy ...

5 tháng 6 2020

a) \(ĐKXĐ:x\ne\pm3\)

b) \(A=\left(\frac{x}{x+3}+\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{x^2-9}\right):\frac{3}{x+3}\)

\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{\left(x-3\right)\left(x^2+3x+9\right)}{\left(x+3\right)\left(x^2-9\right)}\right):\frac{3}{x+3}\)

\(\Leftrightarrow A=\left(\frac{x}{x+3}-\frac{x^2+3x+9}{\left(x+3\right)^2}\right):\frac{3}{x+3}\)

\(\Leftrightarrow A=\frac{x^2+3x-x^2-3x-9}{\left(x+3\right)^2}:\frac{3}{x+3}\)

\(\Leftrightarrow A=\frac{-9\left(x+3\right)}{3\left(x+3\right)^2}\)

\(\Leftrightarrow A=\frac{-3}{x+3}\)

c) Tại \(x=-\frac{1}{2}\)

\(\Leftrightarrow A=\frac{-3}{-\frac{1}{2}+3}\)

\(\Leftrightarrow A=\frac{-6}{5}\)

d) Để \(A>0\)

\(\Leftrightarrow\frac{-3}{x+3}>0\)

\(\Leftrightarrow x+3< 0\)(Vì -3 < 0)

\(\Leftrightarrow x< -3\)

e) +) Với \(A>\frac{-1}{2}\)

\(\Leftrightarrow\frac{-3}{x+3}>-\frac{1}{2}\)

\(\Leftrightarrow-6>-x-3\)

\(\Leftrightarrow x>3\)(tm)

+) Với \(A< -\frac{1}{2}\)

\(\Leftrightarrow\frac{-3}{x+3}< -\frac{1}{2}\)

\(\Leftrightarrow-6< -x-3\)

\(\Leftrightarrow x< 3\)(chú ý : \(x\ne-3\))

+) Với \(A=-\frac{1}{2}\)

\(\Leftrightarrow-\frac{3}{x+3}=-\frac{1}{2}\)

\(\Leftrightarrow x+3=6\)

\(\Leftrightarrow x=3\)(ktm)

Vậy \(\orbr{\begin{cases}A>-\frac{1}{2}\\A< -\frac{1}{2}\end{cases}}\)