K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

9HB=4HC

=>\(\dfrac{HB}{4}=\dfrac{HC}{9}=k\)

=>\(HB=4k;HC=9k\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(36k^2=36\)

=>\(k^2=1\)

=>k=1

=>HB=9(cm)

20 tháng 11 2023

Câu 1: Cả 4 câu đều đúng

Câu 2:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>BC=5

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=2,4

11 tháng 10 2023

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>BH(BH+2)=3

=>\(BH^2+2HB-3=0\)

=>(BH+3)(BH-1)=0

=>BH=-3(loại) hoặc BH=1(nhận)

Vậy: BH=1cm

\(AH^2=BH\cdot HC\)

\(\Leftrightarrow4HC^2=32^2\)

\(\Leftrightarrow HC=16\left(cm\right)\)

=>BH=64(cm)

=>BC=16+64=80(cm)

a: BC=10cm

AH=4,8cm

5 tháng 11 2021

mình cần câu b với c ạ 

 

27 tháng 6 2021

a)Áp dụng đl pytago ta có:

`BC^2=AB^2+AC^2=36+64=100`

`<=>BC=10cm`

Áp dụng HTL vào tam giác vuông ABC ta có:

`AH.BC=AB.AC`

`<=>10AH=48`

`<=>AH=4,8cm`

b)Xét tam giác vuông HAC ta có:

`cos hat{HAC}=(AH)/(AC)=3/5`

`=>hat{HAC}=53^o`

27 tháng 6 2021

- Áp dụng định lý pitago vào tam giác ABC vuông tại A .

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác vuông ABC đường cao AH .

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

b, - Áp dụng tỉ số lượng giác vào tam giác HAC

Có : \(\cos A2=\dfrac{AH}{AC}=\dfrac{3}{5}\)

\(\Rightarrow\widehat{A2}\approx53^o\)15,

c, - Đề không rõ bạn ơi ;-;