K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2023

312

18 tháng 2 2020

*Tìm Max:

Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)

Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)

\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\)  (đúng)

Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.

*Tìm min:

Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)

\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )

Tương tự hai BĐT còn lại và cộng theo vế:

\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

m=1 bạn ơi 

4 tháng 7 2017

TXD: D=[-2;2].

Đặt:

t = x + 2 + 2 - x ( 2 ≤ t ≤ 2 2 ) ⇒ 2 4 - x 2 = 2 2 - x 2 + x = t 2 - 4

Khi đó hàm số trở thành:

y = f ( t ) = t 2 + t - 4     và có đạo hàm    f ' ( t ) = 2 t + 1 > 0 trên D

=> hàm số đồng biến với mọi    t   ∈ [ 2 ; 2 2 ]

Do đó; min y = f(2)=2

m a x   y   =   4 + 2 2

Chọn A

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

\(P=\left|x\right|+\left|x+26\right|+\left|x-12\right|\ge\left|x\right|+\left|x+26+12-x\right|=\left|x\right|+38\ge38\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+26\right)\left(12-x\right)\ge0\\\left|x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}-26\le x\le12\\x=0\end{cases}}}\) ( thỏa mãn ) 

... 

22 tháng 11 2021

NOOBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

27 tháng 4 2018

a,M=125-25:2,5

      =125-10

       =115

b,M=120 nên 120=125-25:x

                    125-120=25:x

                          5=25:x

                           25:5=x

                             x=5

c,Phần c có thể sai đề bài vì theo toan lop 7 thì: x là số tự nhiên nên x> hoac =0 

                                                                         nên 25:x> hoặc =0

                                                                         nên -25:x<0

                                                                         nên 125-25:x< hoặc bằng0

                                                                         nên ta chỉ tìm được M lớn nhất là 125 và x=0 chứ ko tìm M nhỏ nhất 

9 tháng 1 2017

A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)

A nhỏ nhất khi x - 7 =  3 => x = 10

A lơn nhất khi x - 7 = -3 => x = 4

9 tháng 1 2017

thanks very much

Barack Obama