K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

\(x\ge2017\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2017}\ge0\\x\ge2017\end{matrix}\right.\)\(\Rightarrow MaxP=0\)

dấu"=" xảy ra khi x=2017

28 tháng 3 2019

sai roi ban. dap an la \(\frac{1}{2\sqrt{2017}}\)

28 tháng 1 2018

a, A >= 0

Dấu "=" xảy ra <=> x=0

Vậy GTNN của A = 1 <=> x=0

b, B >= 1/2

Dấu "=" xảy ra <=> x=0

Vậy GTNN của B = 1/2 <=> x=0

Tk mk nha

28 tháng 1 2018

Câu a)

Ta có: \(A=\sqrt{x}+1\)

Ta có: \(\sqrt{x}\ge0\)

Suy ra \(\sqrt{x}+1\ge1\)

Vậy A đạt GTNN là 1 tại x = 0 (tự giải x ra nha)

câu b) Tương tự

Thánh làm biếng chào bn :3

27 tháng 10 2020

Sửa đề: Tìm GTNN của \(C=x^2-3x+2017\)

Ta có:

\(C=x^2-3x+2017\)

\(C=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}+2014\)

\(C=\left(x-\frac{3}{2}\right)^2+2014\frac{3}{4}\ge2014\frac{3}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(Min_C=2014\frac{3}{4}\Leftrightarrow x=\frac{3}{2}\)

NV
4 tháng 10 2019

Đặt \(\sqrt{3x}=t\ge0\Rightarrow x=\frac{t^2}{3}\)

\(Q\left(t\right)=\frac{-2t}{3+\frac{t^2}{3}}=\frac{-6t}{t^2+9}\)

\(\Rightarrow Q'\left(t\right)=\frac{-6\left(t^2+9\right)+12t^2}{\left(t^2+9\right)^2}=\frac{6\left(t^2-9\right)}{\left(t^2+9\right)^2}\)

\(Q'\left(t\right)=0\Rightarrow t=3\)

\(Q\left(0\right)=0\) ; \(Q\left(3\right)=-1\)

Dựa vào BBT, ta thấy \(Q_{min}=-1\) khi \(t=3\Rightarrow x=3\)

4 tháng 10 2019

Con on ban nhieu nhaok

10 tháng 8 2020

tai sao x^2 lai = (a+1)^2 vay

NV
8 tháng 8 2020

Đặt \(\left\{{}\begin{matrix}x-1=a>0\\y-1=b>0\end{matrix}\right.\)

\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)

\(P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)

\(P_{min}=8\) khi \(a=b=1\) hay \(x=y=2\)

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)