K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2023

2n + 20 chia hết cho n + 3

⇒ 2n + 6 + 14 chia hết cho n + 3

⇒ 2(n + 3) + 14 chia hết cho n + 3

⇒ 14 chia hết cho n + 3

⇒ n + 3 ∈ Ư(14) = {1; -1; 2; -2; 7; -7; 14; -14}

⇒ n ∈ {-2; -4; -1; -5; 4; -10; 11; -17}

Mà: n < 6

⇒ n ∈ {-2; -4; -1; -5; 4; -10; -17} 

10 tháng 10 2023

(2n + 20) chia hết cho (n + 3)

Ta có:          (n + 3) ⋮ (n + 3)

                  2(n + 3) ⋮ (n + 3)

                  (2n + 6) ⋮ (n + 3)

(2n + 20) - (2n + 6) ⋮ (n + 3)

   (2n + 20 - 2n - 6) ⋮ (n + 3)

                 14          ⋮ (n + 3)

=> (n + 3) ϵ Ư(14) = {1;2;7;14}

=> n ϵ {4;11}

Vì n<6 nên n = 4

Vậy n = 4

29 tháng 12 2023

(4n - 20) ⋮ (2n + 3) (đk n \(\in\) Z)

4n + 6 - 26 ⋮ 2n + 3

2.(2n + 3) - 26 ⋮ 2n + 3

                   26 ⋮ 2n + 3

2n + 3 \(\in\) Ư(26) = {-26; -13; -2; -1; 1; 2; 13; 26}

Lập bảng ta có:

2n + 3  -26 -13 -2 -1 1 2 13 26
n \(\dfrac{29}{2}\) -5 -\(\dfrac{5}{2}\) -2 -1 \(\dfrac{5}{2}\) 5 \(\dfrac{23}{2}\)

Theo bảng trên ta có:

\(\in\) {-5; -2; -1; 5}

 

 

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

20 tháng 9 2015

a, n+ 2n + 4 chia hết cho n+1

=> n(n+1)+n+4 chia hết cho n+1

=> n(n+1)+n+1+3 chia hết cho n+1

=> (n+1).(n+1)+3 chia hết cho n+1

Vì (n+1)(n+1) chia hết cho n+1

=> 3 chia hết cho n+1

=> n+1 thuộc Ư(3)

=> n+1 thuộc {1; -1; -3;  3}

Mà n thuộc N

=> n thuộc {0; 2}

b, 2n2 + 10n + 20 chia hết cho 2n+3

n(2n+3)+7n+20 chia hết cho 2n+3

Vì n(2n+3) chia hết cho 2n+3

=> 7n+20 chia hết cho 2n+3

=> 14n+40 chia hết cho 2n+3

=> 14n+21+19 chia hết cho 2n+3

=> 7.(2n+3)+19 chia hết cho 2n+3

Vì 7.(2n+3) chia hết cho 2n+3

=> 19 chia hết cho 2n+3

=> 2n+3 thuộc Ư(19)

=> 2n+3 thuộc {1; -1; 19; -19}

=> 2n thuộc {-2; -4; 16; -22}

Mà n thuộc N

=> n = 8

24 tháng 11 2019

Vì 20\(⋮\)2n+3 nên 2n+3\(\in\)Ư(20)={1;2;4;5;10;20}

+) 2n+3=1 

     n=-1  (không thỏa mãn)

+) 2n+3=2   

     n=-0,5  (không thỏa mãn)

+) 2n+3=4

     n=0,5  (không thỏa mãn)

+) 2n+3=5

     n=1  (thỏa mãn)

+) 2n+3=10

    n=3,5  (không thỏa mãn)

+) 2n+3=20

     n=8,5  (không thỏa mãn)

Vậy n=1 là giá trị cần tìm.

24 tháng 11 2019

\(20⋮\left(2n+3\right)\Rightarrow2n+3\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)\(20\)}
Vì 2n+3 là số lẻ \(\Rightarrow2n+3\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2n\in\left\{-4;-2;-8;2\right\}\)
\(\Rightarrow n=1\)(Vì n là số tn}
Vậy n=1

21 tháng 11 2015

n + 11 chia hết cho 5 + n

n + 5 + 6 chia hết cho 5 + n

5 + n thuộc  U(6) = {-6;-3;-2;-1;1;2;3;6}

Mà n là số TN 

Vậy n = 1

Tương tự

18 tháng 11 2018

a, n+3 chia hết cho n-2 => (n+3)-(n-2) chia hết cho n-2 

=>5 chia hết cho n-2=. n-2 thuộc Ư(5) => n-2 thuộc{1,-1,5,-5}

=>n thuộc{3,1,7,-3}

b,2n+3 chia hết n+1 =>2.(n+1)+1 chia hết cho n+1

=>1 chia hết cho n+1=>n+1 thuộc Ư(1)

=> n+1 thuộc{1,-1}

=>n thuộc{0,-2}

18 tháng 11 2018

a) n+3 chia hết cho n-2

=> n-2+5 chia hết cho n-2

=> (n-2)+5 chia hết cho n-2

=> n-2 chia hết cho n-2 ; 5 chia hết cho n-2

=> n-2 thuộc Ư(5)={1,5,-1,-5}

=> n thuộc {3.7.1.-3}

b) 2n+3 chia hết cho n+1

=> 2n+2+1 chia hết cho n+1

=> 2(n+1)+1 chia hết cho n+1

=> 2(n+1) chia hết cho n+1 ; 1 chia hết cho n+1

=> n+1 thuộc Ư(1)={1,-1}

=> n thuộc {0,-2}