Chứng minh rằng mọi số tự nhiên a ; b
a) 2a + 6 chia hết cho 2
b) 9a + 27b chia hết cho 9
c) 2a + 4b + 1 không chia hết cho 2
d) 5a + 15b + 3 không chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
a/Gọi 3 số tn liên tiếp là a , a+1 , a+2
Ta có A=a.(a+1).(a+2)
Chứng minh A chia hết cho 2: Chỉ có hai trường hợp
+Nếu a=2k =>A chia hết cho 2
+Nếu a=2k+1 =>a+1=2k+1+1= 2(k+1) =>A chia hết cho 2
Chứng minh A chia hêt cho 3: Chỉ có ba trường hợp
+Nếu a=3k =>A chia hết cho 3
+Nếu a=3k+1 =>a+2=3k+1+2=3k+3=3(k+1) =>A chia hết cho 3
+Nếu a=3k+2 =>a+1=3k+2+1=3k+3=3(k+1) =>A chia hết cho 3
vì A chia hết cho cả 2 và 3
mà ƯCLN(2,3)=1
vậy A chia hết cho 6
bài b bạn làm tương tự
1./ Gọi tích của 3 số tự nhiên liên tiếp là: A = n*(n+1)(n-1)
Trong 3 số tự nhiên liên tiếp thì:
A chia hết cho cả 2 và 3 mà U(2;3) = 1 => A chia hết cho 2x3 = 6. đpcm
2./ Tương tự, gọi tích B = a*(a + 1)*(2a + 1)
Như vậy, bất kỳ số tự nhiên a nào thì B cũng chia hết cho cả 2 và 3 => b chia hết cho 6.
Lời giải:
Cho $b=a+4$ ta có:
$ab+4=a(a+4)+4=a^2+4a+4=(a+2)^2$ là số chính phương.
Vậy với mọi số tự nhiên $a$, tồn tại số tự nhiên $b=a+4$ để $ab+4$ luôn là số chính phương.
Đáp án: theo đề bài :
ab+4=x^2
<=>x^2-4=ab
<=>x^2-2^2=ab =>(x+2)(x-2)=ab
Với b=a+4 thì ab+4 là số chính phương.
Chứng minh: Với b=4 thì
ab+4= a(a+4) +4 =a2+4a+4=(a+2)2
Đặt \(ab+4=n^2\).
\(\Rightarrow ab=n^2-4=\left(n-2\right)\left(n+2\right)\).
Nếu \(a=n-2\)thì \(b=n+2=n-2+4=a+4\).
Vậy ta chỉ cần lấy \(b=a+4\)thì \(ab+4\)luôn là số chính phương.