Gúp mình với: Phân tích đa thức thành nhân tử: (x2 - x - 3)(x2 - x - 4) -12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x-3\right)+4\left(3-x\right)\)\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
\(x^2\left(x-3+12-4x\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
b: \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)
c: \(x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
Lời giải:
a. Bạn xem lại đề
b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)
\(=(x-2)^2(x+2)^2\)
c.
\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)
\(=x^2(x^2+1)(x-1)\)
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
a: \(x^2-6x+5=\left(x-5\right)\left(x-1\right)\)
b: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
c: \(x^2+8x+15=\left(x+5\right)\left(x+3\right)\)
d: \(2x^2-5x-12=\left(x-4\right)\left(2x+3\right)\)
e: \(x^2-13x+36=\left(x-9\right)\left(x-4\right)\)
Phân tích đa thức thành nhân tử:
a) (x-1)(x-2)(x-3)(x-4)+1
b) (x2+3x+2)(x2+7x+12)+1
c) 12x2-3xy-8xz+2yz
a) \(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\)
\(A=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+1\)
\(A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)
Đặt \(a=x^2-5x+5\)
\(\Leftrightarrow A=\left(a-1\right)\left(a+1\right)+1\)
\(\Leftrightarrow A=a^2-1^2+1\)
\(\Leftrightarrow A=a^2\)
Thay \(a=x^2-5x+5\)vào A ta có :
\(A=\left(x^2-5x+5\right)^2\)
b) \(B=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\)
\(B=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)+1\)
\(B=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]+1\)
\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
Làm tương tự câu a)
c) \(12x^2-3xy-8xz+2yz\)
\(=3x\left(4x-y\right)-2z\left(4x-y\right)\)
\(=\left(4x-y\right)\left(3x-2z\right)\)
a) Áp dụng HĐT 1 thu được ( 2 x + y ) 2 .
b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được
[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).
c) Ta có: 9 - 6x + x 2 - y 2 = ( 3 - x ) 2 - y 2 = (3 - x - y)(3 -x + y).
d) Ta có: -(x + 2) + 3( x 2 - 4) = -{x + 2) + 3(x + 2)(x - 2)
= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).
\(\left(x^2-x-3\right)\left(x^2-x-4\right)-12\)
\(=x^4-x^3-4x^2-x^3+x^2+4x-3x^2+3x+12-12=x^4-2x^3-6x^2+7x\)
\(=x.\left(x^3-2x^2-6x+7\right)=x.\left(x^3-x^2-x^2+x-7x+7\right)\)
\(=x.\left[x^2.\left(x-1\right)-x.\left(x-1\right)-7.\left(x-1\right)\right]=x\left(x-1\right)\left(x^2-x-7\right)\)