Cho đa thức P(x) = x2 +mx +n, với m,n là các số nguyên. Chứng minh đa thức Q(x)=P(x)-P(2023).P(2024) có nghiệm nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thật may câu này tương tự câu cuối trong đề thi HSG 9 tỉnh mình năm 2021-2022 nên biết làm :)) (bài lúc đó y chang thế này chỉ khác là số 2021 với 2022)
Trước tiên ta sẽ chứng minh \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\). Thật vậy, ta có:
\(VP=P\left(x\right)P\left(x+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=\left(x^2+mx+n\right)\left(x^2+2x+1+mx+m+n\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x^2+mx+n\right)+2x+m+1\right]\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+x^2+mx+n\)
\(=\left[\left(x^2+mx+n\right)+x\right]^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left[P\left(x\right)+x\right]^2+m\left[P\left(x\right)+x\right]+n\)
\(=P\left(P\left(x\right)+x\right)=VT\)
Vậy đẳng thức được chứng minh.
Từ \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\), chọn \(x=2023\), ta được:
\(P\left(P\left(2023\right)+2023\right)=P\left(2023\right)P\left(2024\right)\)
\(\Rightarrow Q\left(x\right)\) có nghiệm nguyên là \(x=P\left(2023\right)+2023\) (đpcm)
Lời giải:
$M(x)=x^2-x+2023=(x^2-x+\frac{1}{4})+\frac{8091}{4}=(x-\frac{1}{2})^2+\frac{8091}{4}$
Vì $(x-\frac{1}{2})^2\geq 0$ với mọi $x$ nên $M(x)\geq \frac{8091}{4}>0$ với mọi $x$
$\RIghtarrow M(x)\neq 0$ với mọi $x$ nên $M(x)$ không có nghiệm.
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Bài 3:
\(x=1-\sqrt{2}\Leftrightarrow x^2=3-2\sqrt{2}=2-2\sqrt{2}+1\\ \Leftrightarrow x^2=2x+1\Leftrightarrow x^2-2x-1=0\\ \Leftrightarrow P\left(x\right)=ax^2+bx+c=x^2-2x-1\\ \Leftrightarrow a=1;b=-2;c=-1\\ \Leftrightarrow11a+3b+2x=11-6-2=3⋮3\)