Tìm x: 230+[2^2+(x-5)^2]=315×2021^0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 36:(x–5) = 2 2
(x–5) = 9
x = 14
b, [3.(70–x)+5]:2 = 46
[3.(70–x)+5] = 92
70–x = 29
x = 41
c, 450:[41–(2x–5)] = 3 2 .5
41–(2x–5) = 10
2x–5 = 31
2x = 36
x = 18
d, 230+[ 2 4 +(x–5)] = 315. 2018 0
16+(x–5) = 315–230
x–5 = 85–16
x = 69+5
x = 74
e, 2 x + 2 x + 1 = 48
2 x .(2+1) = 48
2 x = 16 = 2 4
x = 4
f, 3 x + 2 + 3 x = 2430
3 x . 3 2 + 1 = 2430
3 x = 2430:10 = 243 = 3 5
x = 5
d , ( x : 7 + 15 ) . 23 + 391 => Đề thiếu
e , ( 19 . x + 2 . 52 ) : 14 = ( 13 - 8 ) 2 - 42
=> ( 19 . x + 2 . 52 ) : 14 = 52 - 16
=> ( 19 . x + 2 . 52 ) : 14 = 25 - 16 = 9
=> 19 . x + 2 . 52 = 9 x 14 = 126
=> 19 . x + 2 . 25 = 126
=> 19 . x + 50 = 126
=> 19 . x = 126 - 50 = 76
=> x = 76 : 19 = 4
\(a,\Leftrightarrow6x-9+4-2x=-3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-3-6x\right)\left(2x-3+6x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-3-4x=0\\8x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{8}\end{matrix}\right.\)
a
\(230+\left[16+\left(y-5\right)\right]=315\cdot1\)
\(230+\left[16+\left(y-5\right)\right]=315\)
\(16+\left(y-5\right)=315-230\)
\(16+\left(y-5\right)=85\)
\(y-5=85-16\)
\(y-5=69\)
\(y=69+5\)
\(y=74\)
b
\(707:\left[\left(2^y-5\right)+74\right]=16-9\)
\(707:\left[\left(2^y-5\right)+74\right]=7\)
\(\left(2^y-5\right)+74=707:7\)
\(\left(2^y-5\right)+74=101\)
\(2^y-5=101-74\)
\(2^y-5=27\)
\(2^y=27+5\)
\(2^y=32\)
\(2^y=2^5\)
\(\Rightarrow y=5\)
a) \(x\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2021\end{cases}}\).
b) \(\left(x-2020\right)\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-2021\end{cases}}\).
c) \(\left(x-2021\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\x^2+1=0\end{cases}}\Leftrightarrow x=2021\).
d) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Xét tổng: \(A=1+3+5+...+99\)
Số số hạng của dãy số là: \(\frac{99-1}{2}+1=50\).
Tổng của dãy là: \(A=\left(99+1\right)\times50\div2=2500\).
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow x=-50\).
a,
13[x-9] = 169
=> x - 9 = 169/13
=> x - 9 = 13
=> x = 13+9
=> x = 22
b,
Viết lại đề:
7x+3 = 343
<=> 7x+3 = 73
=> x + 3 = 3
=> x = 3-3
=> x = 0
c,
230 + [16 + [x-5]] = 315 . 23
=> 230 + [16 + x - 5] = 315 . 8
=> 230 + 16 + x - 5 = 2520
=> 230 + 16 + x = 2520 + 5 = 2525
=> x = 2525 - 230 - 16 = 2279
d,
13.x - 32.x = 20171 - 12018
=> 13x - 9x = 2017 - 1
=> 4x = 2016
=> x = 504
a) 13 ( x-9 )=169
=> x-9 =169 : 13 =13
=> x=13+9 =22
b)\(7^{x+3}=343\)
\(7^x.7^3=343\)
\(7^x=343:7^3\)
\(7^x=1\Rightarrow x=1\)
c)230 + 16 +x -5 =315.8
241 +x =2520
x=2520-241=2279
d) 13x -\(3^2.x\)=2017-1
x(13-9)=2016
x.4=2016
x=2016:4
x=504
a) (2010 - x)(x + 2021) = 0
<=> \(\left[{}\begin{matrix}2010-x=0\\x+2021=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=2010\\x=-2021\end{matrix}\right.\)
b) (x - 2)^2 + 5(x - 2) = 0
<=> x^2 - 4x + 4 + 5x - 10 = 0
<=> x^2 + x - 6 = 0
<=> x^2 - 2x + 3x - 6 = 0
<=> x(x - 2) + 3(x - 2) = 0
<=> (x + 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)
230 + [2² + (x - 5)²] = 315 . 2021⁰
230 + 4 + (x - 5)² = 315.1
234 + (x - 5)² = 315
(x - 5)² = 315 - 234
(x - 5)² = 81
x - 5 = 9 hoặc x - 5 = -9
*) x - 5 = 9
x = 9 + 5
x = 14
*) x - 5 = -9
x = -9 + 5
x = -4
Vậy x = -4; x = 14
Cứucứu