phan tich cac da thuc sau thanh nhan tu
x^2-x-12
x^2+8x+15
x^3-x^2+x+3
x^8+3x^4+4
x^6-x^4-2x^3+2x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phan tich cac da thuc sau thanh nhan tu theo mau:
a)\(2x^3-x\)
\(=x\left(2x^2-1\right)\)
\(=x\left(\left(\sqrt{2}x\right)^2-1^2\right)\)\
\(=x\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)\)
b)\(5x^2\left(x-1\right)-15x\left(x-1\right)\)
\(=\left(5x^2-15x\right)\left(x-1\right)\)
\(=5x\left(x-3\right)\left(x-1\right)\)
d)\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(3x-6y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)^2\)
\(1.x^3+2x+x^2=x\left(x^2+x+2\right)\)
\(2.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
\(3.-3x^3-5x^2+8x=-3x^3+3x^2-8x^2+8x\)
\(=-3x^2\left(x-1\right)-8x\left(x-1\right)=\left(3x^2+8x\right)\left(1-x\right)\)
\(=x\left(3x+8\right)\left(1-x\right)\)
\(4.x^2+4x-5=x^2-x+5x-5=\left(x-1\right)\left(x+5\right)\)
\(5.6x^2-3x-3=6x^2-6x+3x-3=3\left(x-1\right)\left(2x+1\right)\)
\(6.3x^2-2x-5=3x^2+3x-5x-5=\left(x+1\right)\left(3x-5\right)\)
\(8.x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)\(=\left(x+2y\right)\left(x-y-2\right)\)
\(9.x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
\(10.x^2-y^2+6x+9=\left(x+3-y\right)\left(x+3+y\right)\)
câu 1:
x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)
Câu 2 :
a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)
\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)
\(=x^2-2x+1\)
b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)
\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)
Câu 3 :
Sửa đề :
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
a. x4 + x2y2 + y4 = (x4 + 2x2y2 + y4) - x2y2
= (x2 + y2)2 – (xy)2
= [(x2 + y2) + xy] [(x2 + y2) – xy]
= (x2 + xy + y2)(x2 –xy + y2)
c)\(x^3-x^2+x+3=x^2+x-2x^2-2x+3x+3\)
\(=x\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+3\right)\)
d)\(x^8+3x^4+4=\left(x^8+4x^4+4\right)-x^4=\left(x^4+2\right)^2-\left(x^2\right)^2\)
\(=\left(x^4-x^2+2\right)\left(x^4+x^2+2\right)\)
e)\(x^6-x^4-2x^3+2x^2=x^4\left(x^2-1\right)-2x^2\left(x-1\right)=x^4\left(x-1\right)\left(x+1\right)-2x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^3+x^2\right)-2x^2\left(x-1\right)=x^2\left(x-1\right)\left(x^3+x^2-2\right)\)
\(=x^2\left(x-1\right)\left[\left(x^3-1\right)+\left(x^2-1\right)\right]=x^2\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(x+1\right)\right]\)
\(=x^2\left(x-1\right)\left(x-1\right)\left(x^2+2x+2\right)=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)
a)\(x^2-x-12\)
\(=x^2+4x-3x-12\)
\(=x\left(x+4\right)-3\left(x+4\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
b) \(x^2+8x+15\)
\(=x^2+3x+5x+15\)
\(=x\left(x+3\right)+5\left(x+3\right)\)
\(=\left(x+3\right)\left(x+5\right)\)