Cho | x | < 3 và | y | < 5 vs x;y thuộc Z
Tìm x;y biết x - y = 2
Giúp mk vs m.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
a) vì x và y là hai đại lượng TLT nên y=ax
mà x=5 thì y=10
suy ra 10=5a suy ra a=2
Vậy y=2x ( hệ số tỉ lệ a=2)
b) y=3x
khi x=-3suy ra y=-9
Khi x=-2 suy ra y=-6
...
a) (x+3)(y+5)=1
vì x nguyên y nguyên nên x+3 và y+5 nguyên
theo bài ra thì x+3 và y+5 phải là ước của 1
Ư(1) = {-1; 1)
+) nếu x+3 = 1 thì y +5 = 1
=> x = -2 và y = -4
+) nếu x+3 = -1 thì y +5 = -1
=> x = -4 và y = -6
b) (2x-5)(y-6)=17
tương tự câu a
theo bài ra thì 2x-5 và y-6 phải là ước của 17
Ư(17) = {-1; 1; -17, 17)
+) nếu 2x - 5 = -1 thì y +5 = -17
=> 2x = 4 y = -22
=> x = 2
+) nếu 2x - 5 = 1 thì y +5 = 17
=> 2x = -6 y = 12
=> x = -3
+) nếu 2x - 5 = -17 thì y +5 = -1
......
+) nếu 2x - 5 = 17 thì y +5 = 1
...........
bạn giải tiếp ra và kết luận nhé
a) ta có: x+3=1 suy ra x=-2
y+5=1 suy ra y=-4
b) ta có: 2x-5=17 suy ra 2x=22
x=11
y-6=17 suy ra y= 23
a)vì y và x là 2 đại lượng tỉ lệ thuận nên theo tc 2 đại lượng tỉ lệ thuận ta có: \(y=kx\)
Khi x=5 thì y=3 thì ta có:
\(3=5k\Rightarrow k=\frac{3}{5}\)
b)\(y=\frac{3}{5}x\)
a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)
suy ra :
\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)
\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)
\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)
bạn xem lại đề ra số hơi xấu