Trong mặt phẳng tọa độ, cho tam giác ABC có ba đỉnh \(A( - 1;3),B(1;2),C(4; - 2)\)
a) Viết phương trình đường thẳng BC.
b) Tính diện tích tam giác ABC
c) Viết phương trình đường tròn có tâm A và tiếp xúc với đường thẳng BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường cao AH đi qua điểm \(A\left( { - 1;5} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_{AH}}} = \overrightarrow {BC} = \left( {4; - 2} \right)\).
Phương trình tổng quát của AH là \(4\left( {x + 1} \right) - 2\left( {y - 5} \right) = 0 \Leftrightarrow 2x - y + 7 = 0\).
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
Ta có: \(\overrightarrow {AB} = \left( {4;1} \right),\overrightarrow {AC} = \left( {3;3} \right),\overrightarrow {BC} = \left( { - 1;2} \right)\)
+) Đường thẳng AB nhận vectơ \(\overrightarrow {AB} = \left( {4;1} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1; - 4} \right)\) và đi qua điểm \(A(1;1)\), suy ra ta có phương trình tổng quát của đường thẳng AB là:
\(\left( {x - 1} \right) - 4\left( {y - 1} \right) = 0 \Leftrightarrow x - 4y + 3 = 0\)
Độ dài đường cao kẻ từ C chính là khoảng cách từ điểm C đến đường thẳng AB
\(d\left( {C,AB} \right) = \frac{{\left| {4 - 4.4 + 3} \right|}}{{\sqrt {{1^2} + {4^2}} }} = \frac{{9\sqrt {17} }}{{17}}\)
+) Đường thẳng BC nhận vectơ \(\overrightarrow {BC} = \left( { - 1;2} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {2;1} \right)\) và đi qua điểm \(B(5;2)\), suy ra ta có phương trình tổng quát của đường thẳng BC là:
\(2\left( {x - 5} \right) + \left( {y - 2} \right) = 0 \Leftrightarrow 2x + y - 12 = 0\)
Độ dài đường cao kẻ từ A chính là khoảng cách từ điểm A đến đường thẳng BC
\(d\left( {A,BC} \right) = \frac{{\left| {2.1 + 1 - 12} \right|}}{{\sqrt {{2^2} + {1^2}} }} = \frac{{9\sqrt 5 }}{5}\)
+) Đường thẳng AC nhận vectơ \(\overrightarrow {AC} = \left( {3;3} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_3}} = \left( {1; - 1} \right)\) và đi qua điểm \(A(1;1)\), suy ra ta có phương trình tổng quát của đường thẳng AC là:
\(\left( {x - 1} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow x - y = 0\)
Độ dài đường cao kẻ từ B chính là khoảng cách từ điểm B đến đường thẳng AC
\(d\left( {B,AC} \right) = \frac{{\left| {5 - 2} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{3\sqrt 2 }}{2}\)
\(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(5;-10\right)\\\overrightarrow{CD}=\left(x+20;y\right)\end{matrix}\right.\) \(\Rightarrow\dfrac{x+20}{5}=\dfrac{y}{-10}\)
\(\Rightarrow y=-2x-40\) \(\Rightarrow D\left(x;-2x-40\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(-30;-5\right)\\\overrightarrow{BD}=\left(x-15;-2x-35\right)\end{matrix}\right.\)
\(AC=BD\Rightarrow30^2+5^2=\left(x-15\right)^2+\left(2x+35\right)^2\)
\(\Leftrightarrow5x^2+110x+525=0\Rightarrow x=...\Rightarrow D\left(...\right)\)
a) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}} = (4;3)\)
PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}} = (4;3)\) làm VTPT là:
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}} = 5\)
\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)
c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:
\({(x + 1)^2} + {(y - 3)^2} = 1\)