Cho tam giác ABC vuông tại A, AC=20,góc B=70 độ.giải tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a) Ta có: AD=AC(gt)
mà A nằm giữa hai điểm C và D(gt)
nên A là trung điểm của CD
Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD(A là trung điểm của CD_
BA là đường cao ứng với cạnh CD(BA⊥CA, D∈CA)
Do đó: ΔBCD cân tại B(Định lí tam giác cân)
Sửa đề: Góc B = 30 độ
----------------------------------------
a) Ta có: \(\widehat{BAC}+\widehat{BAD}=180^0\) (kề bù)
\(\Rightarrow\widehat{BAD}=180^0-\widehat{BAC}=180^0-90^0=90^0\)
Xét ΔBAD và ΔBAC ta có:
AD = AC (GT)
Góc BAD = Góc BAC (= 900)
AB: canhj chung
=> ΔBAD = ΔBAC (c - g - c)
=> Góc C = Góc D (2 góc tương ứng)
=> Tam giác BDC cân tại B (1)
ΔABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{ABC}=90^0-30^0=60^0\left(2\right)\)
Từ (1) và (2) => Tam giác BDC đều
b) Tam giác BDC đều
=> BC = CD
Mà: CD = 2. AC
=> BC = 2.AC
a)
Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)
\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)
b,
Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ
\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)
Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)
a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
có : ( tổng ba góc của một tam giác )
Mà ( hai góc kề bù )
a: Xét ΔABC vuông tại B và ΔAED vuông tại E có
AC=AD
\(\widehat{A}\) chung
Do đó: ΔABC=ΔAED
b: Đề sai rồi bạn
Xét tam giác ABC vuông tại A ta có:
\(sinB=\dfrac{AC}{BC}\Rightarrow sin70^o=\dfrac{20}{BC}\)
\(\Rightarrow BC=\dfrac{20}{sin70^o}\approx21,3\)
Áp dụng định lý Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{21,3^2-20^3}\approx7,3\)
\(\Rightarrow\widehat{C}=180^o-90^o-70^o=20^o\)