K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

Ta có: abcabc = 1000abc + abc = 1001.abc

Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)

=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13

21 tháng 7 2017

Ta có: abcabc = 10000abc + abc = 10001abc

Vì 1001 = 7 x 11 x 13 ( là tích của 3 thừa số nguyên tố )

=> abcabc luôn chia hết cho 3 số nguyên tố là 7 , 11 và 13

18 tháng 10 2017

a) Theo bài ra ta có:
abcabc = 1000abc + abc
             = ( 1000 +1)abc
             =1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
       1001 chia hết cho 7 => abcabc chia hết cho 7.
       1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3

5 tháng 11 2018

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

4 tháng 10 2017

Ta có:

\(\overline{abcabc}=1001\overline{abc}=11.99\overline{abc}\)

\(11.99\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11

\(\Rightarrow\text{Điều phải chứng minh}\)

4 tháng 10 2017

Vì x ⋮ 11 <=> (a0+a2+a4+...) - (a1+a3+a5+...) ⋮ 11

=> (c+a+b) - (b+c+a) = 0 ⋮ 11

Vậy dạng abcabc bao giờ cũng chia hết cho 11.

11 tháng 11 2015

abc abc=abc.1000+abc=abc.(1000+1) 
=abc.1001=abc.91.11 
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11 
vậy số abcabc lúc nào cũng chia hết cho 11

21 tháng 10 2017

Theo bài ra ta có :

\(\overline{abcabc}\)

\(=\overline{abc}.1000+\overline{abc}.1\)

\(=\overline{abc}.\left(1000+1\right)\)

\(=\overline{abc}.1001\)

\(=\overline{abc}.11.91\)

\(=\left(\overline{abc}.91\right).11\)

\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)

21 tháng 10 2017

Ta có:

\(\overline{abcabc}=1001\overline{abc}=11.91\overline{abc}\)

\(11.91\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11

\(\Rightarrow\) ĐPCM(điều phải chứng minh)

8 tháng 10 2019

abcabc=abc x 1001=abc x 91 x 11\(⋮\)11

#Châu's ngốc

8 tháng 10 2019

abcabc

=abc000+abc

=abc.100+abc

=abc.(100+1)

=abc.101

vì 101:101 =>abc.101 chia hết cho 101 =>abcabc luôn chia hết cho 101 với mọi abc

21 tháng 10 2017

Có abcabc = abc . 1000 + abc

abcabc = abc . ( 1000 + 1 )

abcabc = abc . 1001

abcabc = abc . 11 . 91

Mà 11 \(⋮\)11 nên abc . 11 . 91 \(⋮\) 11

Vậy abcabc \(⋮\) 11 ( đpcm )

31 tháng 7 2016

Ta có: \(\overline{abcabc}=\overline{abc}.1000+\overline{abc}=\overline{abc}.\left(1000+1\right)\)

\(\Rightarrow\overline{abc}.1001=\overline{abc}.91.11\)

Vì \(11⋮11\Rightarrow\overline{abc}.91.11⋮11\)

Vậy số \(\overline{abcabc}\) lúc nào cũng chia hết cho 11

31 tháng 7 2016

abcabc = 1000 . abc + abc = 1001 . abc = 11 . 91 . abc

Vậy abcabc chia hết cho 11.

4 tháng 4 2019

Giải Bài 121 trang 21 SBT Toán 6 Tập 1 | Giải Sách bài tập Toán 6

11 tháng 10 2016

dễ

abcabc = abc . 1001 

abc . 7 . 11 . 13

ta thấy abcabc có chứa các thừa số 7 ,11,13

=> abcabc chia hết chp 7,11,13