Chứng tỏ rằng số abcabc chia hết cho 11,7,13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11 ( chẳng hạn số 328328 chia hết cho 11 )
Ta có:
\(\overline{abcabc}=1001\overline{abc}=11.99\overline{abc}\)
Vì \(11.99\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11
\(\Rightarrow\text{Điều phải chứng minh}\)
Vì x ⋮ 11 <=> (a0+a2+a4+...) - (a1+a3+a5+...) ⋮ 11
=> (c+a+b) - (b+c+a) = 0 ⋮ 11
Vậy dạng abcabc bao giờ cũng chia hết cho 11.
Theo bài ra ta có :
\(\overline{abcabc}\)
\(=\overline{abc}.1000+\overline{abc}.1\)
\(=\overline{abc}.\left(1000+1\right)\)
\(=\overline{abc}.1001\)
\(=\overline{abc}.11.91\)
\(=\left(\overline{abc}.91\right).11\)
\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)
Ta có:
\(\overline{abcabc}=1001\overline{abc}=11.91\overline{abc}\)
Vì \(11.91\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11
\(\Rightarrow\) ĐPCM(điều phải chứng minh)
Có abcabc = abc . 1000 + abc
abcabc = abc . ( 1000 + 1 )
abcabc = abc . 1001
abcabc = abc . 11 . 91
Mà 11 \(⋮\)11 nên abc . 11 . 91 \(⋮\) 11
Vậy abcabc \(⋮\) 11 ( đpcm )
Ta có: \(\overline{abcabc}=\overline{abc}.1000+\overline{abc}=\overline{abc}.\left(1000+1\right)\)
\(\Rightarrow\overline{abc}.1001=\overline{abc}.91.11\)
Vì \(11⋮11\Rightarrow\overline{abc}.91.11⋮11\)
Vậy số \(\overline{abcabc}\) lúc nào cũng chia hết cho 11
dễ
abcabc = abc . 1001
= abc . 7 . 11 . 13
ta thấy abcabc có chứa các thừa số 7 ,11,13
=> abcabc chia hết chp 7,11,13
Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
Ta có: abcabc = 10000abc + abc = 10001abc
Vì 1001 = 7 x 11 x 13 ( là tích của 3 thừa số nguyên tố )
=> abcabc luôn chia hết cho 3 số nguyên tố là 7 , 11 và 13