K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Cho a là 1 số chia hết cho 5

=> 4 số nguyên liên tiếp không chia hết cho 5 là: a+1, a+2, a+3, a+4

Hiệu của tích 2 số cuối với hiệu tích 2 số đầu là: (a+3)(a+4) - (a+1)(a+2) = \(a^2+4a+3a+12-\left(a^2+2a+a+2\right)\)

=\(a^2+4a+3a+12-a^2-2a-a-2\)

=\(4a+10\)

Vì a chia hết cho 5 nên tận cùng của a là 0 hoặc 5

Nếu a tận cùng bằng 0 thì 4a tận cùng bằng 0

Nếu a tận cùng bằng 5 thi 4a tận cùng bằng 4.5 = 20 ( tận cùng cũng bằng 0)

=> 4a tận cùng bằng 0

=> 4a + 10 có tận cùng bằng 0

Vậy hiệu của tích 2 số cuối với tích 2 số đầu có tận cùng bằng 0

Tk mình nha

5 tháng 1 2017

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

8 tháng 10 2017

xl mk thấy tên bn ghê wa

27 tháng 7 2015

1. gọi 3 stn liên tiếp là n,n+1,n+2

ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3

2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3

ta có n+n+1+n+2+n+3 = 4n+6 

vì 4n ; hết cho 4 mà 6 : hết cho 4

=> 4n+6 ko : hết cho 4

3. gọi 2 stn liên tiếp đó là a,b

ta có a=5q + r

b=5q+r

a-b = ( 5q +r) - (5q1+r)

= 5q - 5q1

= 5(q-q1) : hết cho 5

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?1, Số tận cùng là 4 thì chia hết cho 22, Số chia hết cho 2 thì có chữ số tận cùng là 43, Số chia hết cho 5 thì có chữ số tận cùng là 54, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 75, Số chia hết cho 9 có thể chia hết cho 36, Số chia hết cho 3 có thể chia hết cho 97, Nếu một số không chia hết cho...
Đọc tiếp

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

1, Số tận cùng là 4 thì chia hết cho 2

2, Số chia hết cho 2 thì có chữ số tận cùng là 4

3, Số chia hết cho 5 thì có chữ số tận cùng là 5

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7

5, Số chia hết cho 9 có thể chia hết cho 3

6, Số chia hết cho 3 có thể chia hết cho 9

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó

10, Hợp số là số tự nhiên nhiều hơn 2 ước

11, Một số nguyên tố đều là số lẻ

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố

16, Hai số nguyên tố là hai số nguyên tố cùng nhau 

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau 

1

1, Số tận cùng là 4 thì chia hết cho 2                            Đ

2, Số chia hết cho 2 thì có chữ số tận cùng là 4         Đ

3, Số chia hết cho 5 thì có chữ số tận cùng là 5         Đ

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7            S

5, Số chia hết cho 9 có thể chia hết cho 3                       Đ

6, Số chia hết cho 3 có thể chia hết cho 9                      S

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9               S

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r                  Đ

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó                    S

10, Hợp số là số tự nhiên nhiều hơn 2 ước                Đ

11, Một số nguyên tố đều là số lẻ                        S

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5                        S

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8              Đ

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số                 Đ

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố              Đ

16, Hai số nguyên tố là hai số nguyên tố cùng nhau                             S

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau                         S

ht

1)Cho một số tự nhiên có hai chữ số. Biết rằng tổng các số tự nhiên liên tiếp bắt đầu từ 1 đến số này là một số mà hai chữ số tận cùng của nó chính bằng số có hai chữ số ban đầu. Tìm số ban đầu.2)Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 29 thì dư 5, còn chia số đó cho 31 thì dư 28?3)Khi chia 1 số gồm 6 chữ số P giống nhau cho số Q gồm 4 chữ số giống nhau thì được...
Đọc tiếp

1)Cho một số tự nhiên có hai chữ số. Biết rằng tổng các số tự nhiên liên tiếp bắt đầu từ 1 đến số này là một số mà hai chữ số tận cùng của nó chính bằng số có hai chữ số ban đầu. Tìm số ban đầu.

2)Tìm số tự nhiên nhỏ nhất mà khi chia số đó cho 29 thì dư 5, còn chia số đó cho 31 thì dư 28?

3)Khi chia 1 số gồm 6 chữ số P giống nhau cho số Q gồm 4 chữ số giống nhau thì được thương là 233 và 1 số dư là R nào đó .Sau khi bỏ đi 1 chữ số của số P và 1 chữ số của số Q thì thương không thay dổi và số dư giảm 1000.Tìm số Q

4)Tim ba số a,b,c, Biết 1+2+3+...+bc=abc

5)Từ ba chữ số đôi một khác nhau và khác nhau và khác 0, ta lập tất cả các số có ba chữ số đôi một khác nhau. Biết rằng tổng các số lập được là 2886, hiệu giữa số lớn nhất và số nhỏ nhất trong các số lập được là 495. Các chữ số đó là: ......;.....;.......(viết các chữ số theo giá trị tăng dần)

 

0

Gọi bốn số liên tiếp là 5k+1;5k+2;5k+3;5k+4

Ta có: \(\left(5k+1\right)^2+\left(5k+2\right)^2+\left(5k+3\right)^2+\left(5k+4\right)^2\)

\(=25k^2+10k+1+25k^2+20k+4+25k^2+30k+9+25k^2+40k+16\)

\(=100k^2+100k+30\)

\(=10\left(10k^2+10k+3\right)⋮10\)

3 tháng 10 2021

neu 5 stn deu ko chia het cho 5 ma co so du khac nhau thi ta co : 

+  So chia 5 du 1 co dang 5k +1 

+   So chia 5 du 2 co dang 5k+2

+   So chia 5 du 3 co dang 5k +3 

+ So chia 5 du 4 co dang 5k+4

tong cac stn do la :

5k +1+ 5k+ 2 +5k+3 +5k+4 

= 5k .4 + ( 1+2+3+4)

= 5k.4+10

Vi : 5k ⋮ 5 

5k.4 ⋮ 5 và 10 ⋮5 

5k .4 +10 ⋮5