tìm m để phương trình sau có đúng 4 nghiệm phân biệt : x*4 - x*3 - (2m+1)x²+mx+m²+m=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:
\(3^2-m.3+2m-4=0\)
\(\Leftrightarrow9-3m+2m-4=0\)
\(\Leftrightarrow m-5=0\)
\(\Leftrightarrow m=5\)
Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:
\(\Delta=\left(-5\right)^2-4.1.6=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x=2\)
\(x^2-mx+2m-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=m\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt thì \(m\ne2\).
TH1: \(x_1=2,x_2=m\):
\(x_1^2=5x_2-1\Leftrightarrow4=5m-1\Leftrightarrow m=1\) (thỏa mãn).
TH2: \(x_1=m,x_2=2\):
\(x_1^2=5x_2-1\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\) (thỏa mãn).
\(x^4-\left(2m-1\right)x^2-2m=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-2m\right)=0\)
\(\Leftrightarrow x^2=2m\)
Để phương trình có hai nghiệm phân biệt thì \(m>0\).
\(x_{1,2}=\pm\sqrt{2m}\)
\(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow2\sqrt{2m}=4\)
\(\Leftrightarrow m=2\).
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)