Phần tích thành nhân tử
A, xy+y^2-x-y
B, (x^2+x)^2+3(x^2+x)+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Sửa:x^2-xy-13x+13y=x\left(x-y\right)-13\left(x-y\right)=\left(x-13\right)\left(x-y\right)\\ b,=\left(x+y\right)^2-\left(2z\right)^2=\left(x+y-2z\right)\left(x+y+2z\right)\\ c,=\left(x^2-2x\right)-\left(3x-6\right)=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
a) \(7\left(3x-2\right)+y\left(3x-2\right)=\left(3x-2\right)\left(7+y\right)\)
b) \(x\left(y-x\right)-3\left(x-y\right)=x\left(y-x\right)+3\left(y-x\right)=\left(y-x\right)\left(x+3\right)\)
c) \(x^2-6xy+9y^2=\left(x-3y\right)^2\)
\(x^2-2xy+x-2y=x\left(x-2y\right)+x-2y=\left(x-2y\right)\left(x+1\right)\)
\(3x^3+6x+3-3y^2=3\left[\left(x^2+2x+1\right)-y^2\right]=3\left[\left(x+1\right)^2-y^2\right]=3\left(x-y+1\right)\left(x+y+1\right)\)
\(a,=\left(2y^2-1\right)\left(2y^2+1\right)\\ b,=\left(x+y\right)^2-9=\left(x+y+3\right)\left(x+y-3\right)\)
Lời giải:
a. $4y^4-1=(2y^2)^2-1^2=(2y^2-1)(2y^2+1)$
b. $x^2+2xy-9+y^2=(x^2+2xy+y^2)-9$
$=(x+y)^2-3^2=(x+y-3)(x+y+3)$
A. x2 - 3xy
= x (x - 3y)
B. (x + 5)2 - 9
= (x + 5) - 32
= (x + 5 + 3) (x + 5 - 3)
= ( x + 8) ( x + 2)
C. xy + xz - 2y - 2z
= (xy + xz) - (2y + 2z)
= x (y + z) - 2 (y + z)
= (x - 2) (y + z)
a: \(x^4+3x^3+x^2+3x\)
\(=x\left(x^3+3x^2+x+3\right)\)
\(=x\left(x+3\right)\left(x^2+1\right)\)
c: \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-1\right)\)
x²y + xy² - x - y
= (x²y + xy²) - (x + y)
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)
b) \(\left(x^2+x\right)^2+3\left(x^2+x\right)+2\)
\(=\left(x^2+x\right)\left(x^2+x+2\right)+\left(x^2+x+2\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)