Cho hình thang ABCD (AB//CD), Lấy E, F là trung điểm AD, BC.
Trên hai đường chéo BD và AC lần lượt lấy G, K là trung điểm.
CMR: E, G, K, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dảnh wá nên lm :))
Xét hinh thang ABCD có EA=ED ; FB=FC => EF là đường trung bình => EF//AB
Xét tam giác ADB có EA=ED; BI=ID > EI là đường trung bình => EI // AB (1)
Xét tam giác ABC có KA=KC; BF=FC => FK là đường trung bình => FK // AB (2)
Ta lại có IK // AB (EF//AB) (3)
Từ (1) ; (2); (3) => IK//EI//FK Nên theo tiên đề Ơclit thì E;F;I;K thẳng hằng (đpcm)
ABCD là hình thang có AB //CD
E là trung điểm của AD ( gt )
F là trung điểm của BC ( gt)
EF là đường trung bình của hình thang ABCD
EF // AB //CD ( 1 )
K là trungđiểm của BD
EK là đường trung bình của hình thang ABCD
EK // AB (2 )
Theo tiên đề Ơ-Clít , từ ( 1) và (2)
suy ra EF là trùng EK
Vậy 3 điểm E , F , K thẳng hàng
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
Xét tứ giác MBKD có hai đường chéo cắt nhau tại trung điểm mỗi đường nên MBKD là hình bình hành.
Vậy nên DK // MB hay DK // AB.
Lại có DC // AB nên D, K, C thẳng hàng.
Tương tự : C, H, D thẳng hàng.
Từ đó suy ra D, C, H, K thẳng hàng.