Đề bài: Giải phương trình sau trên tập số thực:\(\sqrt{5x^{2}-14x+9}-\sqrt{x^{2}-x-20}=5\sqrt{x+1}\)Bài giải: Điều kiện \(x\geqslant 5\)Chuyển vế và bình phương hai vế phương trình ta có\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-x-20 \right )\left ( x+1 \right )}\) \(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-4x-5 \right )\left ( x+4 \right )}\)Ta cần tìm các hằng số \(a,b\) sao cho\(a\left ( x^{2}-4x-5 \right )+b\left ( x+4 \right )=2x^{2}-5x+2\)Đồng nhất hai...
Đọc tiếp
Đề bài: Giải phương trình sau trên tập số thực:
\(\sqrt{5x^{2}-14x+9}-\sqrt{x^{2}-x-20}=5\sqrt{x+1}\)
Bài giải: Điều kiện \(x\geqslant 5\)
Chuyển vế và bình phương hai vế phương trình ta có
\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-x-20 \right )\left ( x+1 \right )}\)
\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-4x-5 \right )\left ( x+4 \right )}\)
Ta cần tìm các hằng số \(a,b\) sao cho
\(a\left ( x^{2}-4x-5 \right )+b\left ( x+4 \right )=2x^{2}-5x+2\)
Đồng nhất hai vế đẳng thức trên ta có hệ phương trình
\(\left\{\begin{matrix} a=2 & & \\ -4a+b=-5 & & \\ -5a+4b=2 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a=2 & & \\ b=3 & & \end{matrix}\right.\)
Đặt \(u=\sqrt{x^{2}-4x-5}; v=\sqrt{x+4}\), ta có phương trình
\(2a^{2}+3b^{2}=5ab\Leftrightarrow \left ( a-b \right )\left ( 2a-3b \right )=0\)
TH1: \(a=b\) thì \(x=\frac{5+\sqrt{61}}{2}\)
TH2: \(2a=3b\) thì \(x=8\)
Vậy nghiệm của phương trình là \(x=8;x=\frac{5+\sqrt{61}}{2}\)
Thay nghiệm tìm được vào phương trình ban đầu ta có:
+) Thay \(x = 1\) vào phương trình \(\sqrt { - {x^2} + x + 1} = x\) ta thấy thảo mãn phương trình
+) Thay \(x = - \frac{1}{2}\) vào \(\sqrt { - {x^2} + x + 1} = x\) ta thấy không thỏa mãn phương trình
Vậy nghiệm của phương trình là \(x = 1\), suy ra lời giải như trên là sai.