Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành hình chữ nhật mới có kích thước \(\left( {20 + x} \right)\) cm và \(\left( {15 - x} \right)\) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
1 tháng 9 2021
Chu vi hình chữ nhật lớn là:
(21 + 12) x 2 = 66(cm)
Chu vi hình chữ nhật bé là :
(12 + 9) x 2 = 42(cm)
Độ dài đoạn dây là:
66 + 42 + 9 = 117(cm)
HT
1 tháng 9 2021
Chu vi hcn có CD= 21cm; CR= 12cm là :
(21+12) × 2 = 66(cm)
Chu vi hcn có CD = 12cm; CR = 9cm là:
(12+9) × 2= 42 (cm)
chiều dài của đoạn thép là:
66+42+9= 117 (cm)
Đáp số: 117cm
LC
22 tháng 12 2021
Chu vi hình chữ nhật là :
( 250 + 120 ) ⋅ 2 = 740 ( cm )
Chu vi 1 hình thoi là : 60 ⋅ 4 = 240 ( cm )
Chu vi 4 hình thoi là : 240 ⋅ 4 = 960 ( cm )
2 đường thẳng ở giữa cần số cm là : 250 + 120 = 370 ( cm )
Cần số mét dây để làm như vậy là : 370 + 960 + 740 = 2070 ( cm )
Đổi :2070 cm = 20,7 m
Đ/S:20,7m
Theo giải thiết ta có tam thức sau: \(f\left( x \right) = 20.15 - \left( {20 + x} \right)\left( {15 - x} \right) = {x^2} + 5x\)
Tam thức có \(\Delta = 25 > 0\), có hai nghiệm phân biệt \({x_1} = 0;{x_2} = -5\)
Vậy khoảng diện tích tăng lên là \(x>0\) và \(x<-5\), khoảng diện giảm đi là \(x \in(-5;0)\) và diện tích không đổi khi \(x = 0\) và \(x = -5\)