Xét dấu tam thức bậc hai \(h\left( x \right) = - 0,006{x^2} + 1,2x - 30\) trong bài toán khởi động và cho biết ở khoảng cách nào tính từ đầu cầu O thì vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi vận động viên ở độ cao 3m nghĩa là h =3m
Ta có: 3 = - x - 1 2 + 4 ⇔ x - 1 2 – 1=0 ⇔ x 2 – 2x = 0
⇔ x(x – 2) = 0 ⇔ x=0 hoặc x – 2 =0 ⇔ x = 0 hoặc x = 2
Vậy x = 0m hoặc x = 2m
Khi vận động viên chạm mặt nước nghĩa là h = 0m
Ta có: 0 = - x - 1 2 + 4 ⇔ x 2 -2x -3 =0
∆ ' = b ' 2 – ac = - 1 2 -1.(-3) =1 +3 = 4 > 0
Vì khoảng cách không thể mang giá trị âm nên x=3m
Đáp án D
Từ vị trí tương đối của một mặt phẳng với mặt cầu ta có đáp án đúng là D.
a) \(3=-\left(x-1\right)^2+4\Leftrightarrow x^2-2x=0\)
Suy ra \(x_1=0;x_2=2\)
b) Khi vận động viên chạm mặt nước thì \(h=0\).
Do đó \(-\left(x-1\right)^2+4=0\) hay \(x^2-2x-3=0\)
Suy ra \(x_1=-1;x_2=3\)
Vì khoảng cách không âm nên \(x_2=3\left(m\right)\)
Đáp án D
Ta có:
R = d 2 + M N 2 2 = 25 + 12 2 = 13 ⇒ S = 4 π R 2 = 676 π .
Diện tích tam giác BCD bằng:
Diện tích này lớn nhất khi AI // CD.
\(h\left( x \right) = - 0,006{x^2} + 1,2x - 30\) có \(\Delta = 1,{2^2} - 4.\left( { - 0,006} \right).\left( { - 30} \right) = \frac{{18}}{{25}} > 0\), hai nghiệm phân biệt là \({x_1} = 100 - 50\sqrt 2 ;{x_2} = 100 + 50\sqrt 2 \) và \(a = - 0,006 < 0\)
Ta có bảng xét dấu \(h\left( x \right)\) như sau:
Vậy vòm cầu cao hơn mặt cầu là khoảng cách từ \(100 - 50\sqrt 2 \)(m) đến \(100 + 50\sqrt 2 \) (m) (cách từ O), vòm vòm cầu thấp hơn mặt cầu là khoảng cách từ O đến\(100 - 50\sqrt 2 \)(m) và từ \(100 + 50\sqrt 2 \) (m) đến 200 (m) (cách từ O)