K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2023

1 + 2 + 3 + ... + n = 300

n.(n + 1) : 2 = 300

n(n + 1) = 300 . 2

n(n + 1) = 600

n² + n - 600 = 0

n² - 24n + 25n - 600 = 0

(n² - 24n) + (25n - 600) = 0

n(n - 24) + 25(n - 24) = 0

(n - 24)(n + 25) = 0

n - 24 = 0 hoặc n + 25 = 0

*) n - 24 = 0

n = 24 (nhận)

*) n + 25 = 0

n = -25 (loại)

Vậy n = 24

14 tháng 8 2023

a) *Xét x=0

==> Giá trị A=2022!(1)

*Xét 0<x≤2022

==> A=0(2)

*Xét x>2022

==> A≥2022!(3)

Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022

Mà để xmax ==> x=2022 

Vậy ...

b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)

Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất

Mà x-2021≠0 =>x-2021=1==>x=2022

Khi đó Bmax=6057

Vậy...

 

7 tháng 10 2023

Ta có:

\(\dfrac{8n+19}{4n+1}=\dfrac{8n+2+17}{4n+1}=\dfrac{2\left(4n+1\right)+17}{4n+1}=2+\dfrac{17}{4n+1}\)

Để bt nguyên thì \(\dfrac{17}{4n+1}\) phải nguyên:

\(\Rightarrow4n+1\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)

Mà n phải nguyên nên:

\(\Rightarrow4n+1\in\left\{1;17\right\}\)

\(\Rightarrow n\in\left\{0;4\right\}\)

Vậy: ...

7 tháng 10 2023

(8n + 19)/(4n + 1) = 2 + 17/(4n+1). Để (8n + 19)/(4n + 1) có giá trị là một số nguyên => 17 chia hết cho 4n + 1
=> 4n + 1 = 17 => n = 4
=> 4n + 1 = 1 => n = 0
(2 số -17; -4 loại vì n ra phân số)

9 tháng 4 2022

15 nhé (k)đúng cho mình

17 tháng 4 2019

Để  \(A\in Z\Leftrightarrow n+3⋮2n-2\)

                   \(\Leftrightarrow2n+6⋮2n-2\)

                    \(\Leftrightarrow2n-2+8⋮2n-2\)

                    Mà \(2n-2⋮2n-2\)

\(\Rightarrow8⋮2n-2\)

\(\Rightarrow2n-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng rùi tìm n nguyên 

               

Lê Tài Bảo Châu từ dòng thứ 2 không thể dùng dấu tương đương được, vì điều ngược lại chưa chắc đã đúng, với lại tìm n nguyên xong phải thử lại lọc ra các giá trị thỏa mãn.

26 tháng 2 2022

Thay x=3 vào pt ta có:

\(\dfrac{2}{x-m}-\dfrac{5}{x+m}=1\\ \Leftrightarrow\dfrac{2}{3-m}-\dfrac{5}{3+m}=1\\ \Leftrightarrow\dfrac{2\left(3+m\right)-5\left(3-m\right)}{\left(3-m\right)\left(3+m\right)}=1\\ \Rightarrow6+2m-15+5m=3^2-m^2\\ \Leftrightarrow-9+7m-9+m^2-0\\ \Leftrightarrow m^2+7m-18=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-9\end{matrix}\right.\)