K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

\(\left(3x-5y\right)^2+\left(xy-135\right)^2=0\)

Vì \(\left\{{}\begin{matrix}\left(3x-5y\right)^2\ge0\forall x,y\\\left(xy-135\right)^2\ge0\forall x,y\end{matrix}\right.\)

=>  \(\left\{{}\begin{matrix}3x-5y=0\\xy-135=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}y\\xy=135\end{matrix}\right.\)

\(\Rightarrow\dfrac{5}{3}y.y=135\)\(\Rightarrow y^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}y=9\Rightarrow x=15\\y=-9\Rightarrow x=-15\end{matrix}\right.\)

25 tháng 9 2023

Ta có: \(\left(3x-5y\right)^2\ge0\forall x;y\)

           \(\left(xy-135\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(3x-5y\right)^2+\left(xy-135\right)^2\ge0\forall x\)

Mặt khác: \(\left(3x-5y\right)^2+\left(xy-135\right) ^2=0\)

nên: \(\left\{{}\begin{matrix}\left(3x-5y\right)^2=0\\\left(xy-135\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-5y=0\\xy-135=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=5y\\xy=135\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}y\\\dfrac{5}{3}y^2=135\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}y\\y^2=81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}y\\\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\end{matrix}\right.\)

\(+,TH1:y=9\Leftrightarrow x=\dfrac{5}{3}\cdot9=15\left(tm\right)\)

\(+,TH2:y=-9\Leftrightarrow x=\dfrac{5}{3}\cdot\left(-9\right)=-15\left(tm\right)\)

Vậy ...

#\(Toru\)

5 tháng 9 2019

Bài 1.

a) x2 + 7x +12 = 0

Ta có Δ = 72 - 4.12 = 1> 0 => \(\sqrt{\Delta}=\sqrt{1}=1\)

Phương trình có 2 nghiệm phân biệt:

x1 = \(\frac{-7+1}{2}=-3\)

x2= \(\frac{-7-1}{2}=-4\)

5 tháng 9 2019

Bài 1

b) 2x2 + 5x - 3=0

Ta có: Δ = 52 + 4.2.3 = 49 > 0 => \(\sqrt{\Delta}=\sqrt{49}=7\)

Phương tình có 2 nghiệm phân biệt:

x1 = \(\frac{-5+7}{2.2}=\frac{1}{2}\)

x2 = \(\frac{-5-7}{2.2}-3\)

c) 3x2 +10x+7 = 0

Ta có: Δ = 102 - 4.3.7= 16> 0 => \(\sqrt{\Delta}=\sqrt{16}=4\)

Phương tình có 2 nghiệm phân biệt:

x1= \(\frac{-10+4}{2.3}=-1\)

x2= \(\frac{-10-4}{2.3}=-\frac{7}{3}\)

16 tháng 10 2017

a) y( x - 2) + 3x -6 = 2

y( x -2) + 3( x -2) =2

( x -2)( y +3) =2.1 = ( -1).(-2)

*) x -2 = 2 -> x = 4

y +3 = 1 -> y = -2

*) x -2 = 1 -> x = 3

y +3 = 2 -> y = -1

*) x - 2 = - 1 -> x = 1

y +3 = - 2 -> y = -5

*) x - 2 = -2 -> x= 0

y +3 = -1 -> y = -4

16 tháng 10 2017

a) KL : Vậy......

29 tháng 7 2021

ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html

NV
29 tháng 7 2021

b.

Với \(xy=0\) không là nghiệm

Với \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)

\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)

\(\Leftrightarrow5-x^2=5x-2x^2\)

\(\Leftrightarrow...\)

6 tháng 9 2020

ĐKXĐ : x,y ∈ Z

a) xy + 3x - 2y - 7 = 0

<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0

<=> ( y + 3 )( x - 2 ) = 1

Ta có bảng sau :

x-21-1
y+31-1
x31
y-2-4

Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }

b) xy - x + 5y - 7 = 0

<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0

<=> ( y - 1 )( x + 5 ) = 2

Ta có bảng sau :

x+51-12-2
y-12-21-1
x-4-6-3-7
y3-120

Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }

c) x + 2y = xy + 2

<=> x + 2y - xy - 2 = 0

<=> x( 1 - y ) - 2( 1 - y ) = 0

<=> ( x - 2 )( 1 - y ) = 0

<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy ( x ; y ) = ( 2 ; 1 )

6 tháng 9 2020

à cho mình sửa ý c) một chút nhé

( x - 2 )( 1 - y ) = 0

Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R

Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R

DD
15 tháng 7 2021

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)