Giải pt: 1/sinx + 1/sin2x + 1/sin4x =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}sinx< >0\\sin2x< >0\\sin4x< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< >k\Omega\\2x< >k\Omega\\4x< >k\Omega\end{matrix}\right.\Leftrightarrow x\ne\dfrac{k\Omega}{4}\)
\(\dfrac{1}{sinx}+\dfrac{1}{sin2x}+\dfrac{1}{sin4x}=0\)
=>\(\dfrac{1}{sinx}+cotx+\dfrac{1}{sin2x}+cot2x+\dfrac{1}{sin4x}+cot4x=cotx+cot2x+cot4x\)
=>\(\dfrac{1+cosx}{sinx}+\dfrac{1+cos2x}{sin2x}+\dfrac{1+cos4x}{sin4x}=cotx+cot2x+cot4x\)
=>\(\dfrac{2\cdot cos^2\left(\dfrac{x}{2}\right)}{2\cdot sin\left(\dfrac{x}{2}\right)\cdot cos\left(\dfrac{x}{2}\right)}+\dfrac{2\cdot cos^2x}{2\cdot sinx\cdot cosx}+\dfrac{2\cdot cos^22x}{2\cdot sin2x\cdot cos2x}=cotx+cot2x+cot4x\)
=>\(\dfrac{cos\left(\dfrac{x}{2}\right)}{sin\left(\dfrac{x}{2}\right)}+\dfrac{cosx}{sinx}+\dfrac{cos2x}{sin2x}=cotx+cot2x+cot4x\)
=>\(cot\left(\dfrac{x}{2}\right)+cotx+cot2x=cotx+cot2x+cot4x\)
=>\(cot4x=cot\left(\dfrac{x}{2}\right)\)
=>\(\left\{{}\begin{matrix}4x=\dfrac{x}{2}+k\Omega\\4x< >k\Omega\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{7}{2}x=k\Omega\\x< >\dfrac{k\Omega}{4}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{7}k\Omega\)
d/
\(\Leftrightarrow sin2x=sin6x-sin4x\)
\(\Leftrightarrow2sinx.cosx=2cos5x.sinx\)
\(\Leftrightarrow sinx\left(cosx-cos5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos5x=cosx\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\5x=x+k2\pi\\5x=-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{k\pi}{3}\end{matrix}\right.\)
a/ Bạn coi lại vế trái đề bài, nhìn không hợp lý
b/ \(\Leftrightarrow\frac{1}{2}sin9x-\frac{1}{2}sinx=\frac{1}{2}sin5x-\frac{1}{2}sinx\)
\(\Leftrightarrow sin9x=sin5x\)
\(\Leftrightarrow\left[{}\begin{matrix}9x=5x+k2\pi\\9x=\pi-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{14}+\frac{k\pi}{7}\end{matrix}\right.\)
c/ \(\Leftrightarrow sin2x-cos2x=cosx-sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow cos\left(\frac{3\pi}{4}-2x\right)=cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{3\pi}{4}-2x=x+\frac{\pi}{4}+k2\pi\\\frac{3\pi}{4}-2x=-x-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)
\( 2)\sin x + \sin 2x + \sin 3x = 0\\ \Leftrightarrow 2\sin 2x.\cos x + \sin 2x = 0\\ \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sin 2x = 0\\ 2\cos x + 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} 2x = k\pi \\ \cos x = \dfrac{{ - 1}}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{k\pi }}{2}\\ x = \pm \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z} } \right) \)
\( 3)\sin x + \sin 2x + \sin 3x + \sin 4x = 0\\ \Leftrightarrow \left( {\sin x + \sin 4x} \right) + \left( {\sin 2x + \sin 3x} \right) = 0\\ \Leftrightarrow 2\sin \dfrac{{5x}}{2}.\cos \dfrac{{3x}}{2} + 2\sin \dfrac{{5x}}{2}.\cos \dfrac{x}{2} = 0\\ \Leftrightarrow \sin \dfrac{{5x}}{2}.\left( {\cos \dfrac{{3x}}{2} + \cos \dfrac{x}{2}} \right) = 0\\ \Leftrightarrow \sin \dfrac{{5x}}{2}.2\cos x.\cos \dfrac{x}{2} = 0\\ \Leftrightarrow \left[ \begin{array}{l} \sin \dfrac{{5x}}{2} = 0\\ 2\cos x = 0\\ \cos \dfrac{x}{2} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{2k\pi }}{5}\\ x = \dfrac{\pi }{2} + k\pi \\ x = \pi + 2k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)
cho phương trình \(\dfrac{1}{sinx}+\dfrac{1}{sin2x}+\dfrac{1}{sin4x}+...+\dfrac{1}{sin2^{2018}x}=0\)
\(\dfrac{1}{sin2k}=\dfrac{sink}{sink.sin2k}=\dfrac{\left(sin2k-k\right)}{sink.sin2k}=\dfrac{sin2k.cosk-cos2k.sink}{sink.sin2k}\)
\(=\dfrac{cosk}{sink}-\dfrac{cos2k}{sin2k}=cotk-cot2k\)
Do đó pt tương đương:
\(cot\dfrac{x}{2}-cotx+cotx-cot2x+...+cot2^{2017}x-cot^{2018}x=0\)
\(\Leftrightarrow cot\dfrac{x}{2}-cot2^{2018}x=0\)
\(\Leftrightarrow\dfrac{x}{2}=2^{2018}x+k\pi\)
\(\Leftrightarrow...\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
a: \(\Leftrightarrow2\cdot\sin3x\cdot\cos x-2\cos^2x=0\)
\(\Leftrightarrow\cos x\left(\sin3x-\cos x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\\sin3x=\cos x=\sin\left(\dfrac{\Pi}{2}-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\3x=\dfrac{\Pi}{2}-x+k2\Pi\\3x=\dfrac{\Pi}{2}+x+k2\Pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{2}\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
b: \(\Leftrightarrow\sin x+\sin5x+\sin^2x=0\)
\(\Leftrightarrow\sin x=0\)
hay \(x=k\Pi\)
\(sin3x-sinx+sin2x=0\)
\(\Leftrightarrow2cos2x.sinx+2sinx.cosx=0\)
\(\Leftrightarrow sinx\left(cos2x+cosx\right)=0\)
\(\Leftrightarrow2sinx.cos\frac{3x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{x}{2}=0\\cos\frac{3x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{3x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(cosx+cos3x+cos2x+cos4x=0\)
\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)
\(\Leftrightarrow cosx\left(cos2x+cos3x\right)=0\)
\(\Leftrightarrow2cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{x}{2}=0\\cos\frac{5x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\end{matrix}\right.\)
\(\Leftrightarrow2sinx+cos3x+sin2x-sin4x-1=0\)
\(\Leftrightarrow2sinx-1+cos3x-2cos3x.sinx=0\)
\(\Leftrightarrow2sinx-1-cos3x\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(1-cos3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cos3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)
\(\dfrac{1}{sinx}+\dfrac{1}{sin2x}+\dfrac{1}{sin4x}=0\)
\(\dfrac{1}{sinx}+cotx+\dfrac{1}{sin2x}+cot2x+\dfrac{1}{sin4x}+cot4x=cotx+cot2x+cot4x\)
\(\dfrac{1+cosx}{sinx}+\dfrac{1+cos2x}{sin2x}+\dfrac{1+cos4x}{sin4x}=cotx+cot2x+cot4x\)
\(\dfrac{2cos^2\dfrac{x}{2}}{2sin\dfrac{x}{2}.cos\dfrac{x}{2}}+\dfrac{2cos^2x}{2sinx.cosx}+\dfrac{2cos^22x}{2sin2x.cos2x}=cotx+cot2x+cot4x\)
\(\dfrac{cos\dfrac{x}{2}}{sin\dfrac{x}{2}}+\dfrac{cosx}{sinx}+\dfrac{cos2x}{sin2x}=cotx+cot2x+cot4x\)
\(cot\dfrac{x}{2}+cotx+cot2x=cotx+cot2x+cot4x\)
\(cot\dfrac{x}{2}=cot4x\)
\(\Rightarrow\dfrac{x}{2}=4x+k\text{π}\)
\(\Leftrightarrow x=-\dfrac{k2\text{π}}{7}\)