Phân tích đa thức sau thành nhân tử bằng phương pháp nhẩm nghiệm: x3-2x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
a) 2x3-5x2+8x-3
=2x3-x2-4x2+2x+6x-3
=x2(2x-1)-2x(2x-1)+3(2x-1)
=(2x-1)(x2-2x+3)
a,2x3-5x2+8x-3
=2x3-x2-4x2+2x+6x-3
=x2(2x-1)-2x(2x-1)+3(2x-1)
=(2x-1)(x2-2x+3)
a: Ta có: \(x^2-4y^2-2x-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c: Ta có: \(x^3+2x^2y-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
e: Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
f: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
Câu hỏi của nguyễn khánh linh - Toán lớp 8 - Học toán với OnlineMath
\(x^3-x^2y+7x-7y=\left(x^3-x^2y\right)+\left(7x-7y\right)=x^2\left(x-y\right)+7\left(x-y\right)=\left(x-y\right)\left(x^2+7\right)\)
\(x^3-x^2y+7x-7y\)
\(=x^2\left(x-y\right)+7\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x^2+7\right)\)
\(2x^3-5x^2+8x-3\)
\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x+3\)
\(\Leftrightarrow x^2\cdot\left(2x-1\right)-2x\cdot\left(2x-1\right)+3\cdot\left(2x+1\right)\)
\(\Leftrightarrow\left(2x-1\right)\cdot\left(x^2-2x+3\right)\)
\(2x^3-5x^2+8x-3\)
\(=2x^3-x^2-4x^2+2x+6x-3\)
\(=x^2\left(2x-1\right)-2x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2-2x+3\right)\)
= 2x^3 - 4x^2 - x^2 + 2x + 6x - 3
= 2x^2 ( x - 1/2 ) - x ( x - 1/2 ) +3 ( x - 1/2 )
= ( x - 1/2 )( 2x^2 - x + 3 )
x3 -2x - 4= x.x2 -4x + 2x - 4
= x(x2 -4) + 2(x - 2)
= x(x-2)(x+2) + 2(x-2)
= (x-2)(x2 + 2x + 2)
x^3 - 2x - 4 hay x^2 - 2x - 4 vậy