Xét quan hệ bao hàm giữa các tập hợp dưới đây. Vẽ biểu đồ Ven thể hiện các quan hệ bao hàm đó.
A là tập hợp các hình tứ giác;
B là tập hợp các hình bình hành;
C là tập hợp các hình chữ nhật;
D là tập hợp các hình vuông;
E là tập hợp các hình thoi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Vì hình vuông là hình chữ nhật nên E ⊂ D.
- Vì hình chữ nhật là hình bình hành nên D ⊂ B.
- Vì hình bình hành là hình thang nên B ⊂ C.
- Vì hình thang là hình tứ giác nên C ⊂ A.
Vậy E ⊂ D ⊂ B ⊂ C ⊂ A.
Mặt khác:
- Vì hình vuông là hình thoi nên E ⊂ G.
- Vì hình thoi là hình bình hành nên G ⊂ B.
Vậy E ⊂ G ⊂ B ⊂ C ⊂ A.
Tập hợp các số nguyên Z nằm trong tập hợp các số hữu tỉ Q
Có thể nói mỗi số nguyên là một số hữu tỉ
Tham khảo:
Ta có:
Mỗi hình chữ nhật là một hình bình hành đặc biệt (có một góc vuông). Do đó: \(C \subset B\)
Mỗi hình thoi là một hình bình hành đặc biệt (có hai cạnh kề bằng nhau). Do đó: \(E \subset B\)
Mỗi hình bình hành là một hình tứ giác (có một cặp cạnh đối song song và bằng nhau). Do đó: \(B \subset A\)
\(C \cap E\)là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi, hay là hình chữ nhật có 4 cạnh bằng nhau (hình vuông). Do đó: \(C \cap E = D\)
Kết hợp lại ta có: \(\left\{ \begin{array}{l}D \subset C \subset B \subset A,\\D \subset E \subset B \subset A,\\C \cap E = D\end{array} \right.\)
Biểu đồ Ven: