So sánh:
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)và \(B=3^{12}-1\)
CÁC BẠN GIÚP MÌNH CÀNG SỚM CÀNG TỐT NHÉ MÌNH SẮP ĐI HỌC RỒI HUHU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + 1)(a + 2)(a + 3)(a + 4) + 1
= (a2 + 4a + a + 4)(a2 + 3a + 2a + 6) + 1
= (a2 + 5a + 4)(a2 + 5a + 6) + 1 (1)
Đặt a2 + 5a + 5 = b
=> a2 + 5a + 4 = b - 1
a2 + 5a + 6 = b + 1
(1) = (b - 1)(b + 1) + 1
= b2 - 1 + 1
= b2
= (a2 + 5a + 5)2
\(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left[\left(a+1\right).\left(a+4\right)\right].\left[\left(a+2\right).\left(a+3\right)\right]+1\)
\(=\left(a^2+4a+a+4\right).\left(a^2+2a+3a+6\right)+1=\left(a^2+5a+4\right).\left(a^2+5a+6\right)+1\)
Đặt : \(a^2+5a+5=b\) thì ta có :
\(\left(b-1\right).\left(b+1\right)+1=b^2-1+1=b^2\)
thay \(a^2+5a+5\) vào b . ta được :
\(b^2=\left(a^2+5a+5\right)^2\)
VẬy : \(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left(a^2+5a+5\right)^2\)
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)
\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)
\(2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1< 3^{32}\)
Gợi ý: Sử dụng liên tục tính chất \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
2(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= (34 - 1)(34 + 1)(38 + 1)(316 + 1)
= (38 - 1)(38 + 1)(316 + 1)
= (316 - 1)(316 + 1)
= 332 - 1 < 332
Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)
Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)
Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)
Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=1+\frac{3}{2}+...............+\frac{21}{2}\)
\(=\frac{2+3+......+21}{2}\)
\(=\frac{230}{2}=165\)
Baì này mình mới làm lúc sáng bạn vào câu hỏi tương tự có đấy
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{2}< 3^{32}-1=C\)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{32}-1\right)\)\(< \)\(3^{32}-1\)\(=\)\(A\)
Vậy \(B< A\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times...\times\frac{100}{99}\)
\(=\frac{100}{2}=50\)
A=(3+1)(32+1)(34+1)(38+1)(316+1)
=>2A=2.(3+1)(32+1)(34+1)(38+1)(316+1)
=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)
=(32-1)(32+1)(34+1)(38+1)(316+1)
=(34+1)(34+1)(38+1)(316+1)
=(38-1)(38+1)(316+1)
=(316-1)(316+1)
=332-1
=>A=\(\frac{3^{32}-1}{2}