Cho tam giác ABC. Chứng minh rằng:
a) Nếu góc A nhọn thì \({b^2} + {c^2} > {a^2}\)
b) Nếu góc A tù thì \({b^2} + {c^2} < {a^2}\)
c) Nếu góc A vuông thì \({b^2} + {c^2} = {a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Trên tia đối AB lấy D / AB = AD
=> A là trung điểm BD
=> AB = 1/2BD
Mà AB = 1/2BC (gt)
=> BD = BC
+ Xét △ABC, △ADC có :
AB = AD ( A là trung điểm BD)
^CAB = ^CAD = 90o
CA chung
Do đó : △ABC = △ADC (c-c-c)
=> BC = DC ( 2canh tương ứng)
Xét △DCB có : BD = BC = DC (cmt)
=> △DCB đều
=> ^CBA = 60o (dấu hiệu nhận biết)
Vì △ABC (A = 90)
=> ^ABC + ^ACB = 90o
Mà ^ABC = 60o (cmt)
=> ^ACB = 90o - 60o = 30o
Vậy_
a)nối AM lại ta có đường trung tuyến AM
mà AM=1/2.BC =>\(\Delta ABC\perp\)tại A=>góc A=90o
Còn câu b,c bạn tự làm nha chế mình ko bt kaka
Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)
\( \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\;\cos A\)(1)
a) Nếu góc A nhọn thì \(\cos A > 0\)
Từ (1), suy ra \({b^2} + {c^2} > {a^2}\)
b) Nếu góc A tù thì \(\cos A < 0\)
Từ (1), suy ra \({b^2} + {c^2} < {a^2}\)
c) Nếu góc A vuông thì \(\cos A = 0\)
Từ (1), suy ra \({b^2} + {c^2} = {a^2}\)