Cho đa thức P(x) = 2x4-7x3-2x2+13x+6
a) Phân tích đa thức thành nhân tử
b) Chứng minh rằng: P(x) chia hết cho 6 với mọi số nguyên x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhẩm nghiệm, thấy x=-1 thỉ P=0, phân tích đa thức dần thành nhân tử
P(x)=\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
=\(2x^{^{ }4}+2x^3-9x^3-9x^2+7x^2+7x+6x+6\)
=\(\left(x+1\right)\left(x-2\right)\left(2x^2-5x-3\right)\)
=\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-1\right)\)
Đây là 1 tích trong đó có 3 số nguyên lien tiep.
Trong 3 so nguyen lien tiep co it nhat 1 so chan va 1 so chia het cho 3
=> h cua chung chia het cho 2x3=6.
Vay P chia het cho 6.
a) x^4 + 2^3-x -2
=x^4 - x^3 + 3x^3 - 3x^2 + 3x^2 - 3x + 2x-2
=x^3.(x-1) + 3x^2.(x-1) + 3x.(x-1)+2.(x-1)
=(x-1).( x^3+ 3x^2 + 3x+2)
=(X+1).(X^3 + 2X^2 + X^2 +2X +X+2)
=(X+1).(X+2).(X^2 +X + 1)
\(x^3-9x^2+26x-24\)
\(=x^3-4x^2-5x^2+20x+6x-24\)
\(=\left(x-4\right)\left(x^2-5x+6\right)\)
\(=\left(x-4\right)\left(x-2\right)\left(x-3\right)\)