K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

A D B C E F G

Trên tia đối của tia BC lấy G sao cho \(BG=DF=\frac{1}{2}CD\)

Vì \(EC=2EB\Rightarrow EC=\frac{2}{3}BC,EB=\frac{1}{3}BC\)

\(\Rightarrow GE=GB+BE=\frac{1}{2}BC+\frac{1}{3}BC=\frac{5}{6}BC\)

Mà \(\Delta CEF\)  vuông tại C

\(\Rightarrow EF=\sqrt{CF^2+CE^2}=\frac{5}{6}BC\Rightarrow EF=GE\)

Lại có : 

\(BE=DF,AB=AD\Rightarrow\Delta ABG=\Delta ADF\left(c.g.c\right)\) => AG = AF

\(\Rightarrow\Delta AEG=\Delta AEF\left(c.c.c\right)\) \(\Rightarrow\widehat{AEG}=\widehat{AED}\Rightarrow\widehat{AEB}=\widehat{AEF}\)

a: Xét ΔAEB và ΔAEF có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)

AB=AF

Do đó: ΔAEB=ΔAEF

b: Sửa đề: Chứng minh MB=MF

Ta có: ΔABE=ΔAFE

=>AB=AF

=>ΔABF cân tại A

Ta có: ΔABF cân tại A

mà AM là đường phân giác

nên M là trung điểm của BF và AM\(\perp\)BF

M là trung điểm của BF nên MB=MF

AM\(\perp\)BF tại M

=>AE\(\perp\)BF tại M

c: ta có: ΔABE=ΔAFE

=>\(\widehat{ABE}=\widehat{AFE}\)

Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)

\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABE}=\widehat{AFE}\)

nên \(\widehat{EBD}=\widehat{EFC}\)

Ta có: AB+BD=AD

AF+FC=AC

mà AB=AF và AD=AC

nên BD=FC

Xét ΔEBD và ΔEFC có

EB=EF

\(\widehat{EBD}=\widehat{EFC}\)

BD=FC

Do đó: ΔEBD=ΔEFC

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

ta có: AD=AC

=>A nằm trên đường trung trực của DC(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của DC(3)

Từ (1),(2),(3) suy ra A,E,K thẳng hàng

26 tháng 1

Hay

15 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.

17 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.

a) Xét tứ giác BIEM có 

\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối

\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))

Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)

b) Ta có: ABCD là hình vuông(gt)

nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)

⇔BE là tia phân giác của \(\widehat{ABC}\)

\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{IBE}=45^0\)

Ta có: BIEM là tứ giác nội tiếp(cmt)

nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)

mà \(\widehat{IBE}=45^0\)(cmt)

nên \(\widehat{IME}=45^0\)

Vậy: \(\widehat{IME}=45^0\)