Cho hình thang ABCD, AB//CD với AB>CD. CMR: Nếu có AB=AD+BC thì 2 tia phân giác của \(\widehat{C}\) và \(\widehat{D}\) cắt nhau tại 1 điểm thuộc cạnh AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
(Hình ảnh chỉ mang tính chất minh họa nhé. Mình vẽ ko đo đạc, chỉ ước lượng nên có chỗ nhìn không chuẩn)
- Có AB // CD (gt)
=> góc I2 = góc C2 (sole trong)
mà C2 = góc C1 (CI là phân giác góc C - gt)
=> góc I2 = góc C1
=> tam giác IBC cân tại B
=> IB = BC (1)
- AB // CD (gt)
=> góc I1 = góc D2
mà góc D1 = góc D2 (DI là phân giác góc D - gt)
=> góc I1 = góc D1
=> Tam giác AID cân tại A
=> IA = AD (2)
Từ (1) và (2)
=> IA + IB = BC + AD
=> AB = BC + AD
=> AB bằng tổng hai cạnh bên (Đpcm)
a)ta có góc BAD+ADC=180 độ (trong cùng phía ABsong song CD)
suy ra (góc BAE+DAE)+(ADE+EDC)=180 độ
2(EAD+ADE)=180 độ
EAD+ADE=90 độ
suy ra AED=90 độ
b)gọi K là giao điểm DE và AB
ta có góc AKE=ADK(cùng bằng với EDC)
suy ra tam giác AKD cân tại A
tam,giác ADK cân tại A có AE là đường cao phân giác
suy ra AE cũng là đường trung trực
vay ED=EK
xét tam giác BEK và CED
ED=EK(cmt)
BEK=CED(đối đỉnh)
BKE=EDC(so le trong ABsong song CD)
vậy tam giác BEK=CED
suy ra CD=NK
vậy AB+BK=AB+CD=AK
mà AK=AD
nên AD=AB+CD
Ta có AB // CD => Góc IDC=Góc DIA ( so le trong )
Mà góc IDC=góc IDA ( do ID là tia phân giác góc ADC)
=> Góc DIA= Góc IDA => tam giác DIA cân tại A
=> AD = AI (1)
Ta có AB // CD => Góc DCI = Góc CIB (so le trong )
Mà góc DCI = góc ICB ( do IC là tia phân giác góc DCB)
=> Góc CIB = Góc ICB => tam giác CIB cân tại B
=> BC = BI (2)
Cộng (1) và (2) , vế theo vế .Ta được:
AD + BC = AI + BI
=> AD + BC = AB (đpcm)
gọi K là giao điểm DE và AB
ta có góc AKE=ADK(cùng bằng với EDC)
suy ra tam giác AKD cân tại A
tam,giác ADK cân tại A có AE là đường cao phân giác
suy ra AE cũng là đường trung trực
vay ED=EK
xét tam giác BEK và CED
ED=EK
BEK=CED(đối đỉnh)
BKE=EDC(so le trong ABsong song CD)
vậy tam giác BEK=CED
suy ra CD=NK
vậy AB+BK=AB+CD=AK
mà AK=AD
nên AD=AB+CD
đề bài sai
Cho hình thang ABCD, AB//CD với AB>CD. CMR: nếu AD=AB+DC thì 2 tia phân giác của góc A và góc D cắt nhau tại trung điểm của BC.
Giải:
Gọi M,N lần lượt là trung điểm của AD và BC =>MN là đường trung bình của hình thang ABCD =>MN=(AB+CD)/2=AD/2=MA=MD; MN//AB, MN//DC
=>tam giác MND và tam giác MNA cân tại M => góc MND = góc MDN mà góc MND = góc CDN (so le trong)
=> ND là tia phân giác góc D
CM tương tự ta có NA là tia phân giác góc A
mà N trung điểm BC => ĐPCM