K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

\({u_n} = 0,3n + 5 \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 5\\nd = 0,3n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 5,3\\d = 0,3\end{array} \right.\)

Tổng 100 số hạng đầu: \({S_{100}} = \frac{{\left( {{u_1} + {u_{100}}} \right).100}}{2} = \frac{{\left( {5,3 + 0,3.100 + 5} \right).100}}{2} = 2015\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 1\)

\( \Rightarrow {u_2} = 2.1 = 2\)

\( \Rightarrow {u_3} = 3.2 = 6\)

\( \Rightarrow {u_4} = 4.6 = 24\)

\( \Rightarrow {u_5} = 5.24 = 120\)

b)

Ta có:

\({u_2} = 2 = 2.1 \)

\({u_3} = 6= 1.2.3 \)

\({u_4} = 24 = 1.2.3.4\)

\({u_5} = 120 = 1.2.3.4.5\)

\( \Rightarrow {u_n} = 1.2.3....n = n!\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: A

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 3\). Do đó dãy số (un) là một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{3}\) và công bội q = 3 nên ta có số hạng tổng quát là: \({u_n} = \frac{1}{3}{.3^{n - 1}} = {3^{n - 2}}\) với n ∈ ℕ*.

Do đó số hạng thứ năm của dãy số (un) là: \({u_5} = {3^{5 - 2}} = 27\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_n} = 3n - 2\)

\( \Rightarrow {u_1} = 3.1 - 2 = 1\)

\( \Rightarrow {u_2} = 3.2 - 2 = 4\)

\( \Rightarrow {u_3} = 3.3 - 2 = 7\)

\( \Rightarrow {u_4} = 3.4 - 2 = 10\)

\( \Rightarrow {u_5} = 3.5 - 2 = 13\)

\( \Rightarrow {u_{100}} = 3.100 - 2 = 298\)

b) \({u_n} = {3.2^n}\)

\( \Rightarrow {u_1} = {3.2^1} = 6\)

\( \Rightarrow {u_2} = {3.2^2} = 12\)

\( \Rightarrow {u_3} = {3.2^3} = 24\)

\( \Rightarrow {u_4} = {3.2^4} = 48\)

\( \Rightarrow {u_5} = {3.2^5} = 96\)

\( \Rightarrow {u_{100}} = {3.2^{100}}\)

c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)

\( \Rightarrow {u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2\)

\( \Rightarrow {u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\)

\( \Rightarrow {u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\)

\( \Rightarrow {u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\)

\( \Rightarrow {u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\)

\( \Rightarrow {u_{100}} = {\left( {1 + \frac{1}{{100}}} \right)^{100}} = {\left( {\frac{{101}}{{100}}} \right)^{100}}\)

6) cho dãy số có các số hạng đầu tiên là 8,15,22,29,36,.. số hạng tổng quát của dãy số là7) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n+5}{5n-4}\) với mọi n ϵ N* cho biết số hạng thứ n là \(\dfrac{7}{12}\), giá trị của n là8) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n}{n^2+1}\) với mọi  n ϵ N* số \(\dfrac{9}{41}\) là số hạng thứ bao nhiêu trong dãy số9) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng...
Đọc tiếp

6) cho dãy số có các số hạng đầu tiên là 8,15,22,29,36,.. số hạng tổng quát của dãy số là

7) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n+5}{5n-4}\) với mọi n ϵ N* cho biết số hạng thứ n là \(\dfrac{7}{12}\), giá trị của n là

8) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n}{n^2+1}\) với mọi  n ϵ N* số \(\dfrac{9}{41}\) là số hạng thứ bao nhiêu trong dãy số

9) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số tăng

A.\(u_n=\left(\dfrac{2}{3}\right)^n\)

B. \(u_n=\dfrac{n}{n+1}\)

C. \(u_n=\dfrac{2}{n.\left(n+1\right)}\)

D. \(u_n=\dfrac{n+1}{n}\)

10) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số giảmA. \(u_n=3^n\)B. \(u_n=\dfrac{n-3}{n+1}\)C. \(u_n=\dfrac{n+4}{n+2}\)D. \(u_n=n^4+2\) 
1

6:

\(u_n=8+7\left(n-1\right)=7n+1\)

7: Đặt un=7/12

=>\(\dfrac{2n+5}{5n-4}=\dfrac{7}{12}\)

=>35n-28=24n+60

=>11n=88

=>n=8

=>Đây là số hạng thứ 8

8: \(\dfrac{2n}{n^2+1}=\dfrac{9}{41}\)

=>9n^2+9=82n

=>9n^2-82n+9=0

=>(9n-1)(n-9)=0

=>n=9(nhận) hoặc n=1/9(loại)

=>Đây là số thứ 9

10B

9D

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {2n - 1} \right) - \left[ {2\left( {n - 1} \right) - 1} \right] = 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2 \times 1 - 1 = 1,\;\;\;d = 2\)

\({S_{100}} = \frac{{100}}{2}\left[ {2 \times 1 + \left( {100 - 1} \right).2} \right] = 10\;000\)

Chọn đáp án C.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) 5 số hạng đầu của dãy số là: 1; 2; 6; 24; 120.

b) \({F_1} = 1,\;{F_2} = 1,\;{F_3} = 2,\;{F_4} = 3,\;{F_5} = 5\;\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)

Suy ra, \({u_n} = \frac{1}{n}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Dãy số trên là cấp số cộng

Ta có:

\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd =  - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d =  - 2\end{array} \right.\end{array}\)

b)    Dãy số trên là cấp số cộng

Ta có:

 \(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)

c) Dãy số đã cho không là cấp số cộng

Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)

Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*