Chứng minh an+5-an+1 chia hết cho 30 (a thuộc z n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Ta có:
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp (n\(\in Z\))
nên \(A⋮2.3=6\) (1)Do (2,3)=1
Ta cũng có:
\(A=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1); (2) \(\Rightarrow A⋮6.5=30\) Do (6,5)=1
\(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2+1\right)\left(n^2-1\right)\)
\(=n\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
\(=n\left(n^2+5-4\right)\left(n-1\right)\left(n+1\right)⋮6\)(tích 3 số liên tiếp)
\(=n\left(n^2-4\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)⋮5\left(đpcm\right)\)(tích 5 số liên tiếp và 1 tích có thừa số 5)
\(\Rightarrow A⋮30\)
Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)
= n.[(n4 – n2) + (n2 – 1)]
= n.[n2(n2 – 1) + (n2 – 1)]
= n.(n2 – 1).(n2 + 1)
= n.(n2 – n + n – 1)(n2 + 1)
= n.[(n2 – n) + (n – 1)].(n2 + 1)
= n.[n(n- 1) + (n – 1)].(n2 + 1)
= n.(n – 1).(n + 1).(n2 + 1)
Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)
Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n
=> n5 – n có chữ số tận cùng bằng 0.
=> n5 – n chia hết cho 10 (2)
Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).
Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)
= n.[(n4 – n2) + (n2 – 1)]
= n.[n2(n2 – 1) + (n2 – 1)]
= n.(n2 – 1).(n2 + 1)
= n.(n2 – n + n – 1)(n2 + 1)
= n.[(n2 – n) + (n – 1)].(n2 + 1)
= n.[n(n- 1) + (n – 1)].(n2 + 1)
= n.(n – 1).(n + 1).(n2 + 1)
Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)
Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n
=> n5 – n có chữ số tận cùng bằng 0.
=> n5 – n chia hết cho 10 (2)
Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).
Sai đề r nếu a=2 và n=1 thì an+5-an+4=26-25=32 ko chia hết cho 30
ta có
A=n^5-n
=n(n^4-1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1) chia hết cho 6(1)
nếu n=5k => A chia hết cho 5.6=30
nếu n=5k+1 =>n -1 chia hết cho 5 =>từ 1=> A chia hết cho 30
Nếu n=5k+2 =>t n^2+1=25k^2+20k+5 chia hết cho 5
từ 1=> A chia hết cho 30
nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>A chia hết cho 30
Nếu n=5k+4 =>n+1=5k+5 chia hết cho 5
từ 1=>A chia hết cho 30
Vậy với n nguyên dương thì n^5-n chia hết cho 30
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
an+5-an+1 = an.a5-an.a = an.a(a4-1) = an.a.(a2 - 1).(a2 + 1)= an.a.(a-1)(a+1).(a2 + 1)
Do a.(a-1)(a+1) chia hết cho 2;3 => an.a.(a-1)(a+1).(a2 + 1) chia hết cho 6 => an+5-an+1 chia hết cho 6 (1)
an+5-an+1 = an(a5-a) = an(a5-1)
=> Do (a5-1) chia hết cho 5 ( định lí fermat nhỏ) => an(a5-1) chia hết cho 5 => an+5-an+1 chia hết cho 5
Từ (1) và (2) => an+5-an+1 là B(5;6)
Mà BCNN(5;6) = 30 => (an+5-an+1 ) chia hết cho 30