K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

Theo đề bài ta có MN song song với EF

\( \Rightarrow \) \(\widehat {FEI} = \widehat {EIM}\)(2 góc so le trong) và \(\widehat {EFI} = \widehat {FIN}\)(2 góc so le trong)

Xét có \(\widehat {FEI} = \widehat {EIM} = \widehat {IEM}\)(EI là phân giác góc E)cân tại M (2 góc đáy bằng nhau)

\( \Rightarrow \) EM = IM (2 cạnh bên tam giác cân) (1)

Xét có : \(\widehat {EFI} = \widehat {IFN} = \widehat {NIF}\)(FI là phân giác góc F) cân tại N (2 góc đáy bằng nhau)

\( \Rightarrow \)FN = IN (2 cạnh bên tam giác cân) (2)

Ta thấy MN = MI + NI (3)

Từ (1); (2) và (3) \( \Rightarrow \) ME + NF = MN

24 tháng 7

ED=EF(tôi cần lý do để bằng nhau)

 

a: Xet ΔDEN và ΔFEN có

ED=EF
góc DEN=góc FEN

EN chung

=>ΔDEN=ΔFEN

=>ND=NF

=>ΔNDF cân tại N

b: ΔDEN=ΔNFE

=>góc NFE=90 độ

=>NF vuông góc EF

c: Xét ΔDEP có

DF là trung tuyến

DF=EP/2

=>ΔDEP vuông tại D

a: Xét ΔDEF có DI là phân giác

nên \(\dfrac{IE}{IF}=\dfrac{DE}{DF}\)

=>\(\dfrac{IE}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)

=>IE=8(cm)

b: Xét ΔEDF có MI//DF

nên \(\dfrac{EM}{ED}=\dfrac{EI}{EF}\)

=>\(\dfrac{EM}{10}=\dfrac{8}{12.8}=\dfrac{5}{8}\)

=>\(EM=\dfrac{50}{8}=6,25\left(cm\right)\)

Ta có: ME+MD=DE

=>MD+6,25=10

=>MD=3,75(cm)

Xét ΔEDF có IM//DF

nên \(\dfrac{IM}{DF}=\dfrac{EI}{EF}\)

=>\(\dfrac{IM}{6}=\dfrac{8}{12,8}=\dfrac{5}{8}\)

=>\(IM=6\cdot\dfrac{5}{8}=3,75\left(cm\right)\)

c: Xét ΔEDF có MI//DF

nên \(\dfrac{ME}{MD}=\dfrac{EI}{IF}\)

mà \(\dfrac{EI}{IF}=\dfrac{DE}{DF}\)

nên \(\dfrac{ME}{MD}=\dfrac{DE}{DF}\)

a: Xét ΔDEF có DI là phân giác

nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)

=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)

=>EI=8(cm)

b: Ta có: EI+IF=EF

=>EF=6+8=14(cm)

Xét ΔEDF có MI//DF

nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)

=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)

=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)

MD+ME=DE

=>MD+30/7=10

=>MD=40/7(cm)

c: Xét ΔDEF có DI là phân giác

nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)

Xét ΔEDF có MI//DF

nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)

31 tháng 12 2017

Câu 1: giống bài vừa nãy t làm cho bạn rồi!

Câu 2:

vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)

Câu 3 :

sửa đề chút nha : EF là tia phân giác góc DEH

ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)

mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)

=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)

18 tháng 3 2021

???????????????????????????????????????????????????

18 tháng 3 2021

bạn vẽ hình ra đi

19 tháng 7 2018

a) Gọi K là giao điểm của EI và DM

Xét \(\Delta EKD\)và \(\Delta EKM\)có :

\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )

\(EI\): Cạnh chung

\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)

Do đó : Tam giác vuông EKM = Tam giác vuông EKM 

\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )

b) 

Xét \(\Delta EDI\)và \(\Delta EMI\)có :

\(ED=EM\)( câu a )

\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )

\(EI:\)Cạnh chung

Do đó : Tam giác EMI = tam giác EDI (c.g.c )

\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )

Mà \(\widehat{EDI}=90^o\)

\(\Rightarrow\widehat{EMI}=90^o\)

\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)

c) 

Vì \(\widehat{EMI}=90^o\)( câu b )

\(\Rightarrow\widehat{IMF}=90^o\)

Xét tam giác IMF   ta có :

\(\widehat{IMF}=90\)

=> IF là cạnh lớn nhất   ( cạnh đối diện với góc vuông )

\(\Rightarrow IF>IM\)

Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )

\(\Rightarrow IF>ID\)

c ) Áp dụng t/c đường đồng quy .