K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Trong tam giác ABC, xét tổng độ dài 2 cạnh so với cạnh còn lại:

\(\begin{array}{l}AB + AC = 9 + 5 > BC = 12\\AB + BC = 9 + 12 > AC = 5\\AC + BC = 12 + 5 > AB = 9\end{array}\)

Vậy tổng độ dài 2 cạnh trong 1 tam giác luôn lớn hơn độ dài cạnh còn lại.

19 tháng 11 2016

Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )

Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)

+) \(\frac{a}{5}=5\Rightarrow a=25\)

+) \(\frac{b}{4}=5\Rightarrow b=20\)

+) \(\frac{c}{3}=5\Rightarrow c=15\)

Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm

 

19 tháng 11 2016

Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)

Theo đề bài , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)

=> \(\frac{c+10}{7}=\frac{c}{5}\)

=> 5(c + 10) = 7c

=> 5c + 50 = 7c

=> 50 = 2c

=> c = 25

=> a + b = 25 + 10 = 35

Áp dụng tính chất dãy tỉ số , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)

=> a = 3.5 = 15

b = 4.5 = 20

12 tháng 10 2017

Gọi độ dài 3 cạnh của tam giác thứ tự là a, b, c.

Theo đề bài ta có: a3=b4=c9a3=b4=c9

Đặt các tỉ số trên là k. Ta có:

a3=k⇒a=3ka3=k⇒a=3k

b4=k⇒b=4kb4=k⇒b=4k

c9=k⇒c=9kc9=k⇒c=9k

Suy ra: a + b = 3k + 4k = 7k < 9k

Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại).

Vậy không có tam giác nào có 3 cạnh tỉ lệ với 3; 4; 9.



3 tháng 4 2017

Gọi độ dài 3 cạnh của tam giác thứ tự là a,b,c (a > 0; b > 0; c > 0).

Vì độ dài 3 cạnh tỉ lệ với 3, 4, 9 nên:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Suy ra: a + b = 3k + 4k = 7k < 9k (hay a + b < c)

Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại)

Vậy không có tam giác nào có 3 cạnh tỉ lệ 3;4;9.

30 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{2+5-4}=\dfrac{20}{3}\)

Do đó: a=40/3; b=80/3; c=100/3

30 tháng 12 2021

giải thích rõ hơn dc ko anh

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có: 10 + 20 = 30 > 25

10 + 25 = 35 > 20

20 + 25 = 45 > 10

Vậy độ dài của thanh tre bất kì luôn nhỏ hơn tổng độ dài 2 thanh còn lại.

31 tháng 10 2021

Vì các cạnh x,y,z của 1 tam giác tỉ lệ với 2;4;5
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)

Vì tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm
=> (x+z)-y=20 (cm)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\left(cm\right)\)
Từ \(\frac{x}{2}=\frac{20}{3}=>x=\frac{40}{3}\)

Từ \(\frac{y}{4}=\frac{20}{3}=>y=\frac{80}{3}\)

Từ \(\frac{z}{5}=\frac{20}{3}=>z=\frac{100}{3}\)

27 tháng 8 2017

Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có:  x 3 = y 4 = z 5

Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4

Do đó x = 4.3 = 12

Vậy cạnh nhỏ nhất của tam giác là 12m

Đáp án cần chọn là B