Tìm tất cả các số nguyên tố x,y sao cho: x2 - 6y2 =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2 – 2x + 1 = 6y2 -2x + 2
=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do 6y2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5.
Chúc học tốt!
\(\Leftrightarrow x^2-1=6y^2\)
Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)
\(\Rightarrow4\left(k^2+k\right)=6y^2\)
\(\Rightarrow2\left(k^2+k\right)=3y^2\)
Do 2 chẵn \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
Mà y là SNT \(\Rightarrow y=2\)
Thay vào pt đầu:
\(x^2+1=6.2^2+2\Rightarrow x=5\)
Vậy (x;y)=(5;2)
Ta có: \(x^2-1=2y^2\)
Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ
⇒ x= 2k+1
Ta có: \(\left(2k+1\right)^2-1=2y^2\)
⇒ \(4\left(k^2+k\right)=2y^2\)
⇒\(2\left(k^2+k\right)=y^2\)
Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn
Mà y là số nguyên tố ⇒ y = 2
Ta lại có: \(x^2-1=2.2^2\)
⇒ \(x^2-1=8\)
⇒\(x^2=8+1=9\)
⇒ x= -3 hoặc 3
Vì x là số nguyên tố nên x =3
Vậy x=3, y=2
Lời giải:
Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.
Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
TH1: $p=6k+1$ thì:
$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$
Nếu $k$ lẻ thì $3k+1$ chẵn.
$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$
Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$
TH2: $p=6k+5$
$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn
$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Nếu $k$ lẻ thì $k+1$ chẵn
$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$
Ta có \(x^2=6y^2+1\) là số lẻ nên đặt \(x=2k+1\left(k\in N\right)\), ta có:
\(\left(2k+1\right)^2=6y^2+1\Rightarrow4k^2+4k+1=6y^2+1\Rightarrow4k^2+4k=6y^2\)
\(\Rightarrow2k\left(k+1\right)=3y^2\Rightarrow3y^2⋮2\Rightarrow y⋮2\Rightarrow y=2\) (vì y là số nguyên tố)
Thay y=2 vào đẳng thức ban đầu ta được: \(x^2=6.2^2+1=25\Rightarrow x=5\)
Vậy \(\left(x;y\right)=\left(5;2\right)\)
x = 5; y = 2