K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của D chia cho hạng tử bậc cao nhất của E.

Bước 2: Lấy D trừ đi tích của E với thương mới thu được ở bước 1

Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của E

Bước 4: Lấy dư thứ nhất trừ đi tích E với thương vừa thu được ở bước 3. Ta được dư thứ hai có bậc nhỏ hơn bậc của E thì quá trình chia kết thúc.

24 tháng 11 2019

Giải bài 71 trang 32 Toán 8 Tập 1 | Giải bài tập Toán 8

Do đó A = 15x4 - 8x3 + x2 chia hết cho Giải bài 71 trang 32 Toán 8 Tập 1 | Giải bài tập Toán 8 hay A chia hết cho B.

b) A = x2 - 2x + 1 = (x – 1)2

Vậy A chia hết cho x – 1 hay A chia hết cho B.

a: \(\dfrac{A}{B}=\dfrac{x^3+4x^2+3x+12-19}{x+4}=x^2+3+\dfrac{-19}{x+4}\)

b: Để A chia hết cho B thì \(x+4\in\left\{1;-1;19;-19\right\}\)

=>\(x\in\left\{-3;-5;15;-23\right\}\)

19 tháng 12 2021

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

14 tháng 12 2022

a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)

b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{0;-2;2;-4\right\}\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Để thực hiện phép chia một đa thức cho một đa thức khác, ta làm như sau:

Bước 1:

-        Chia đơn thức bậc cao nhất của đa thức bị chia cho đơn thức bậc cao nhất của đa thức chia.

-        Nhân kết quả trên với đa thức chia và đặt tích dưới đa thức bị chia sao cho hai đơn thức có cùng số mũ của biến ở cùng cột.

-        Lấy đa thức bị chia trừ đi tích đặt dưới để được đa thức mới.

Bước 2: Tiếp tục quá trình trên cho đến khi nhận được đa thức không hoặc đa thức có bậc nhỏ hơn bậc của đa thức chia.

13 tháng 10 2019

2 tháng 12 2021

\(=\left(x^4-x^3+x^2+x^3-x^2+x+3x^2-3x+3+2018\right):\left(x^2-x+1\right)\\ =\left[\left(x^2-x+1\right)\left(x^2+x+3\right)+2018\right]:\left(x^2-x+1\right)\\ =x^2+x+3\left(\text{dư 2018}\right)\)

\(\dfrac{A}{B}=\dfrac{8x^3+2x^2-8x-2-3}{4x+1}\)

\(=2x^2-2-\dfrac{3}{4x+1}\)