Giúp mik với ạ:
1. Tìm x, biết :
a) \(\frac{x}{4}=\frac{16}{x^2}\)
b) 1\(\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)
2. Cho
A=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\). CMR: A<\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
làm 1 bài mẫu nha
a) \(\left(\frac{1}{3}.x\right):\frac{2}{3}=\frac{25}{6}\)
\(\Rightarrow\frac{1}{3}x=\frac{25}{9}\)
\(\Rightarrow x=\frac{25}{9}:\frac{1}{3}\)
\(\Rightarrow x=\frac{25}{3}\)
các bài sau dễ lắm
a) \(\left(\frac{1}{3}x\right):\frac{2}{3}=1\frac{2}{3}:\frac{2}{5}\)
\(\Rightarrow\frac{1}{3}x:\frac{2}{3}=\frac{25}{6}\)
\(\Rightarrow\frac{1}{3}x=\frac{5}{3}\)
\(\Rightarrow x=\frac{5}{3}:\frac{1}{3}\)
\(\Rightarrow x=5\)
a) \(\left|x+\frac{1}{2}\right|=\frac{1}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{3}\\x+\frac{1}{2}=-\frac{1}{3}\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{6}\end{cases}}\)
Vậy....
b) \(\left|x-\frac{1}{2}\right|=\frac{1}{3}-\frac{1}{2}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=-\frac{1}{6}\) vô lí do \(\left|a\right|\ge0\)
Vậy pt vô nghiệm
c) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|=3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{3}=3\\x+\frac{1}{3}=-3\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}}\)
Vậy..
d) \(\left|x-\frac{1}{5}\right|+\frac{1}{3}=\frac{1}{4}-\left|-\frac{3}{2}\right|\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|+\frac{1}{3}=-\frac{5}{4}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|=-\frac{19}{12}\)vô lí do \(\left|a\right|\ge0\)với mọi a
Vậy pt vô nghiệm
e) \(\left|x-\frac{5}{2}\right|=\frac{4}{3}-\left(\frac{2}{3}-\frac{1}{2}\right)\)
\(\Leftrightarrow\)\(\left|x-\frac{5}{2}\right|=\frac{7}{6}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{7}{6}\\x-\frac{5}{2}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\frac{2}{3}\\x=\frac{4}{3}\end{cases}}\)
Vậy...
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)
\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow\)\(x+329=0\) (vì 1/327 + 1/326 + 1/325 + 1/324 + 1/5 khác 0 )
\(\Leftrightarrow\)\(x=-329\)
Bài 1 :
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)
\(\Rightarrow\)\(x+329=0\)
\(\Rightarrow\)\(x=-329\)
Vậy \(x=-329\)
\(a)\) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=-4+4\)
\(\Leftrightarrow\)\(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+\frac{x+4+96}{96}=0\)
\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)
Nên \(x+100=0\)
\(\Rightarrow\)\(x=-100\)
Vậy \(x=-100\)
Chúc bạn học tốt ~
\(b)\) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=1-\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{2009}\)
\(\Leftrightarrow\)\(x+1=2009\)
\(\Leftrightarrow\)\(x=2009-1\)
\(\Leftrightarrow\)\(x=2008\)
Vậy \(x=2008\)
Chúc bạn học tốt ~
a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)
b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)
vậy x=25
1.
a) \(\frac{x}{4}=\frac{16}{x^2}\)
\(\Rightarrow x^3=64\)
\(\Rightarrow x^3=4^3\)
\(\Rightarrow x=4\)
b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)
\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)
\(\frac{x}{10}=\frac{5}{2}\)
\(\Rightarrow x=\frac{5.10}{2}=25\)
2.
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)