\(\dfrac{x-4}{\sqrt{x}-1}\)
Tìm giá trị của x để A = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=\left(\dfrac{\sqrt{x}-1}{x-4}-\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}-2x-4\sqrt{x}+8}{6\sqrt{x}-18}\left(dk:x\ne4,x\ge0,x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}\right).\dfrac{\sqrt{x^2}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}.\dfrac{\left(x-4\right)\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2-x-3\sqrt{x}-2}{\left(x-4\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(x-4\right)\left(\sqrt{x}-2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-6\sqrt{x}}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
\(b,P>0\Leftrightarrow\dfrac{-\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow-\sqrt{x}>0\Leftrightarrow\sqrt{x}< -1\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}-3>0\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
\(c,P< 1\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-3}< 1\Leftrightarrow-\sqrt{x}< 1\Leftrightarrow\sqrt{x}>-1\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}-3< 1\Leftrightarrow\sqrt{x}< 4\Leftrightarrow x< 2\)
a: \(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)-2\sqrt{x}\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)^2}{6\left(\sqrt{x}-3\right)}\)
=1/3(căn x-3)
b: P>0
=>căn x-3>0
=>x>9
c: P<1
=>P-1<0
=>\(\dfrac{1-3\sqrt{x}+9}{3\sqrt{x}-9}< 0\)
=>\(\dfrac{-3\sqrt{x}+10}{3\sqrt{x}-9}< 0\)
=>(3căn x-10)/(3căn x-9)>0
=>x>100/3 hoặc 0<x<9
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
d) Để A>0 thì \(\sqrt{x}-2>0\)
hay x>4
giải phương trình
a)\(\sqrt{x^8}=256\) b)\(\sqrt{x^2-2x+1}=x-1\)
a, ĐK: \(x\ge0,x\ne1\)
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{x+1+2\sqrt{x}+x+1-2\sqrt{x}-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)
c: Q=3
=>3căn x+6=căn x-2
=>2căn x=-8(loại)
d: Q>1/2
=>Q-1/2>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)
=>2căn x-4-căn x-2>0
=>căn x>6
=>x>36
d: Q nguyên
=>căn x+2-4 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-4)
=>căn x+2 thuộc {2;4}
=>x=0 hoặc x=4(nhận)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)
b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
\(A=4\\ \Rightarrow\dfrac{x-4}{\sqrt{x}-1}=4\\ \Leftrightarrow4\left(\sqrt{x}-1\right)=x-4\\ \Leftrightarrow4\sqrt{x}-4=x-4\\ \Leftrightarrow4\sqrt{x}-x=4-4\\ \Leftrightarrow4\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=16\) thì A = 4
Minh chỉ biết kết quả chính xác thôi.
\(\left[{}\begin{matrix}x=0\\x=\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)