K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

Bài 1:

\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)

2:

a: =-(x^2-3x+1)

=-(x^2-3x+9/4-5/4)

=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn

b: =-2(x^2+3/2x+3/2)

=-2(x^2+2*x*3/4+9/16+15/16)

=-2(x+3/4)^2-15/8<0 với mọi x

6 tháng 2 2020

\(1,\text{Ta có: với a=1;b=-6;c=11 thì }P\left(x\right)=x^2-6x+11=\left(x-3\right)^2+2>0\Rightarrow\text{vô nghiệm}\)

\(2,\text{ với: x=3}\Rightarrow f\left(3\right)+5f\left(\frac{1}{3}\right)=27\)

\(với:x=\frac{1}{3}\text{ thì:}f\left(\frac{1}{3}\right)+5f\left(3\right)=\frac{1}{27}\)

\(\Rightarrow6\left(f\left(3\right)+f\left(\frac{1}{3}\right)\right)=\frac{730}{27}\Leftrightarrow f\left(3\right)+f\left(\frac{1}{3}\right)=\frac{365}{81}\Rightarrow4f\left(3\right)=\frac{-362}{81}\Rightarrow f\left(3\right)=\frac{-362}{324}\)

7 tháng 2 2020

shitbo ơi giải thihs hỗ 4f(3)

7 tháng 7 2018

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

7 tháng 7 2018

Giúp mình với !!

a: Sửa đề: \(\dfrac{2x-1}{11}+\dfrac{2x-2}{12}+\dfrac{2x-3}{13}=\dfrac{2x+5}{5}+\dfrac{2x+7}{3}+\dfrac{2x+4}{6}\)

\(\Leftrightarrow\dfrac{2x-1}{11}+1+\dfrac{2x-2}{12}+1+\dfrac{2x-3}{13}+1=\dfrac{2x+5}{5}+1+\dfrac{2x+7}{3}+1+\dfrac{2x+4}{6}+1\)

=>2x+10=0

hay x=-5

b: \(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}-5=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-5}{2012}-1\right)=0\)

=>x-2017=0

hay x=2017

a: Sửa đề: \(\dfrac{2x-1}{11}+\dfrac{2x-2}{12}+\dfrac{2x-3}{13}=\dfrac{2x+5}{5}+\dfrac{2x+7}{3}+\dfrac{2x+4}{6}\)

\(\Leftrightarrow\dfrac{2x-1}{11}+1+\dfrac{2x-2}{12}+1+\dfrac{2x-3}{13}+1=\dfrac{2x+5}{5}+1+\dfrac{2x+7}{3}+1+\dfrac{2x+4}{6}+1\)

=>2x+10=0

hay x=-5

b: \(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}-5=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-5}{2012}-1\right)=0\)

=>x-2017=0

hay x=2017