Tính:
a) \((3{x^6}):(0,5{x^4})\);
b) \(( - 12{x^{m + 2}}):(4{x^{n + 2}})\)(m, n \(\in\) N, m ≥ n).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \( - 2{x^2} + 6{x^2} = ( - 2 + 6).{x^2} = 4{x^2}\);
b) \(4{x^3} - 8{x^3} = (4 - 8).{x^3} = - 4{x^3}\);
c) \(3{x^4}( - 6{x^2}) = 3.( - 6).{x^4}.{x^2} = - 18{x^{4 + 2}} = - 18{x^6}\);
d) \(( - 24{x^6}):( - 4{x^3}) = ( - 24: - 4).({x^6}:{x^3}) = 6{x^{6 - 3}} = 6{x^3}\).
a: \(\dfrac{1}{8}\cdot\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{1}{10}\cdot\dfrac{5}{3}=\dfrac{1}{2\cdot3}=\dfrac{1}{6}\)
b: \(=\dfrac{8-3}{12}\cdot\dfrac{6}{5}=\dfrac{6}{12}=\dfrac{1}{2}\)
c: \(=\dfrac{24}{35}:\dfrac{32}{35}=\dfrac{3}{4}\)
d: =63/21+15/21-7/21=71/21
a \(\dfrac{1}{8}\times\dfrac{4}{5}\times\dfrac{10}{6}=\dfrac{1}{6}\)
b \(\left(\dfrac{8}{12}-\dfrac{3}{12}\right)\times\dfrac{6}{5}=\dfrac{5}{12}\times\dfrac{6}{5}=\dfrac{1}{2}\)
c \(\dfrac{24}{35}:\dfrac{32}{35}=\dfrac{24}{35}\times\dfrac{35}{32}=\dfrac{3}{4}\)
d \(\dfrac{63}{21}+\dfrac{15}{21}-\dfrac{7}{21}=\dfrac{71}{21}\)
a: \(=\dfrac{18+6}{27+6}=\dfrac{24}{33}=\dfrac{8}{11}\)
b: \(=\dfrac{21\cdot7\cdot11}{3\cdot11\cdot4}=\dfrac{147}{12}=\dfrac{49}{4}\)
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);
b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);
c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) = - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\\ = - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} = - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);
d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);
e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ = - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} = - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)
a) 4 + 5/7 = .... 28/7 + 5/7=.33/7..............
5/9 x 6/7 = ..10/21....
3 - 7/5 = 15/5 - 7/5...8/5........
3/5 x 4/8 = ..3/10....
b) 2 - 1/4 = .8/4 - 1/4...7/4...
4 : 5/9 = ..4 x 9/5 = 36/5....
2/9 x 3/5 = .....2/15.....
3/8 : 4 = ......3/8 x 1/4 = 3/2.....
a) \((3{x^6}):(0,5{x^4}) = (3:0,5).({x^6}:{x^4}) = 6.{x^{6 - 4}} = 6{x^2}\);
b) \(( - 12{x^{m + 2}}):(4{x^{n + 2}}) = ( - 12:4).({x^{m + 2}}:{x^{n + 2}}) = - 3.{x^{m + 2 - n - 2}} = - 3.{x^{m - n}}\)(m, n \(\in\) N, m ≥ n).