Tính:
a) \(3{x^5}.5{x^8}\);
b) \( - 2{x^{m + 2}}.4{x^{n - 2}}\) (m, n \(\in\) N; n > 2).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{1}{8}\cdot\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{1}{10}\cdot\dfrac{5}{3}=\dfrac{1}{2\cdot3}=\dfrac{1}{6}\)
b: \(=\dfrac{8-3}{12}\cdot\dfrac{6}{5}=\dfrac{6}{12}=\dfrac{1}{2}\)
c: \(=\dfrac{24}{35}:\dfrac{32}{35}=\dfrac{3}{4}\)
d: =63/21+15/21-7/21=71/21
a \(\dfrac{1}{8}\times\dfrac{4}{5}\times\dfrac{10}{6}=\dfrac{1}{6}\)
b \(\left(\dfrac{8}{12}-\dfrac{3}{12}\right)\times\dfrac{6}{5}=\dfrac{5}{12}\times\dfrac{6}{5}=\dfrac{1}{2}\)
c \(\dfrac{24}{35}:\dfrac{32}{35}=\dfrac{24}{35}\times\dfrac{35}{32}=\dfrac{3}{4}\)
d \(\dfrac{63}{21}+\dfrac{15}{21}-\dfrac{7}{21}=\dfrac{71}{21}\)
a) 4 + 5/7 = .... 28/7 + 5/7=.33/7..............
5/9 x 6/7 = ..10/21....
3 - 7/5 = 15/5 - 7/5...8/5........
3/5 x 4/8 = ..3/10....
b) 2 - 1/4 = .8/4 - 1/4...7/4...
4 : 5/9 = ..4 x 9/5 = 36/5....
2/9 x 3/5 = .....2/15.....
3/8 : 4 = ......3/8 x 1/4 = 3/2.....
a) \(3\left(2x-3\right)+5\left(x+2\right)=6x-9+5x+10=11x+1\)
b) \(3x\left(2x-8\right)+\left(6x+2\right)\left(5-x\right)=6x^2-24x+30x-6x^2+10-2x=4x+10\)
c) \(\left(x-3\right)\left(x+3\right)-\left(x-5\right)^2=x^2-9-x^2+10x-25=10x-34\)
d) \(\left(x-y\right)^3-\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-3x^2y+3xy^2-y^3-x^3+y^3=3xy^2-3x^2y\)
a)
Vậy \(({x^3} + 1):({x^2} - x + 1) = x + 1\).
b)
Vậy \((8{x^3} - 6{x^2} + 5) = ({x^2} - x + 1)(8x + 2) + ( - 6x + 3)\)
Lời giải:
a.
$(2x-3)^2+(2x+3)(5-2x)=(4x^2-12x+9)-(-4x^2+4x+15)$
$=4x^2-12x+9+4x^2-4x-15$
$=24-8x$
b.
$3(2x-3)+5(x+2)=6x-9+5x+10=11x+1$
c.
$3x(2x-8)+(6x-2)(5-x)=(6x^2-24x)+(-6x^2+32x-10)$
$=6x^2-24x-6x^2-32x+10$
$=8x-10$
d.
$(x-3)(x+3)-(x-5)^2=(x^2-9)-(x^2-10x+25)$
$=x^2-9-x^2+10x-25=10x-34$
e.
$(x-y)^3-(x-y)(x^2+xy+y^2)=(x^3-3x^2y+3xy^2-y^3)-(x^3-y^3)$
$=-3x^2y+3xy^2=3xy(y-x)$
a: ta có: \(\left(2x-3\right)^2+\left(2x+3\right)\left(5-2x\right)\)
\(=4x^2-12x+9+2x-4x^2+15-6x\)
\(=-16x+24\)
b: Ta có: \(3\left(2x-3\right)+5\left(x+2\right)\)
\(=6x-9+5x+10\)
\(=11x+1\)
c: ta có: \(3x\left(2x-8\right)+\left(6x-2\right)\left(5-x\right)\)
\(=6x^2-24x+30x-6x^2-10+2x\)
\(=8x-10\)
a) \(\begin{array}{l}(8{x^3} + 2{x^2} - 6x):(4x) = 8{x^3}:(4x) + 2{x^2}:(4x) - (6x):(4x)\\ = (8:4).({x^3}:x) + (2:4).({x^2}:x) - (6:4).(x:x)\\ = 2{x^2} + \dfrac{1}{2}x - \dfrac{3}{2}\end{array}\)
b) \(\begin{array}{l}(5{x^3} - 4x):( - 2x) = 5{x^3}:( - 2x) - 4x:( - 2x) = (5: - 2).({x^3}:x) - (4: - 2).(x:x)\\ = - \dfrac{5}{2}{x^{3 - 1}} - ( - 2) = - \dfrac{5}{2}{x^2} + 2\end{array}\)
c) \(\begin{array}{l}( - 15{x^6} - 24{x^3}):( - 3{x^2}) = ( - 15{x^6}):( - 3{x^2}) + ( - 24{x^3}):( - 3{x^2})\\ = ( - 15: - 3).({x^6}:{x^2}) + ( - 24: - 3).({x^3}:{x^2})\\ = 5.{x^{6 - 2}} + 8.{x^{3 - 2}} = 5{x^4} + 8x\end{array}\)
a) \(3{x^5}.5{x^8} = 3.5.{x^5}.{x^8} = 15.{x^{5 + 8}} = 15.{x^{13}}\).
b) \( - 2{x^{m + 2}}.4{x^{n - 2}} = - 2.4.{x^{m + 2}}.{x^{n - 2}} = - 8.{x^{m + 2 + n - 2}} = - 8.{x^{m + n}}\) (m, n \(\in\) N; n > 2).