Thực hiện mỗi phép tính sau:
a) \(\dfrac{4}{9}x + \dfrac{2}{3}x\); b) \( - 12{y^2} + 0,7{y^2}\); c) \( - 21{t^3} - 25{t^3}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{8y}{3x^2}.\dfrac{9x^2}{4y^2}=\dfrac{72x^2y}{12x^2y^2}=\dfrac{6}{y}\\b,\dfrac{3x+x^2}{x^2+x+1}.\dfrac{3x^3-3}{x+3}=\dfrac{x\left(x+3\right)3\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x+3\right)}=3x\left(x-1\right)=3x^2-3x \)
\(c,\dfrac{2x^2+4}{x-3}.\dfrac{3x+1}{x-1}.\dfrac{6-2x}{x^2+2}=\dfrac{2\left(x^2+2\right)\left(3x+1\right)2\left(3-x\right)}{\left(x-3\right)\left(x-1\right)\left(x^2+2\right)}=\dfrac{-4\left(3x+1\right)}{x-1}=\dfrac{-12x-4}{x-1}\)
\(d,\dfrac{2x^2}{3y^3}:\left(-\dfrac{4x^3}{21y^2}\right)=\dfrac{-2x^2.21y^2}{3y^3.4x^3}=\dfrac{-42x^2y^2}{12x^3y^3}=\dfrac{-7}{2xy}\)
\(e,\dfrac{2x+10}{x^3-64}:\dfrac{\left(x+5\right)^2}{2x-8}=\dfrac{2\left(x+5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}.\dfrac{2\left(x-4\right)}{\left(x+5\right)^2}=\dfrac{4}{\left(x+5\right)\left(x^2+4x+16\right)}=\dfrac{4}{x^3+9x^2+16x+80}\)
\(f,\dfrac{1}{x+y}\left(\dfrac{x+y}{xy}-x-y\right)-\dfrac{1}{x^2}:\dfrac{y}{x}=\dfrac{1}{x+y}\left(\dfrac{\left(x+y\right)\left(1-xy\right)}{xy}\right)-\dfrac{x}{x^2y}=\dfrac{1-xy}{xy}-\dfrac{x}{x^2y}=\dfrac{-x^2y}{x^2y}=-1\)
a) \({x^2} + \dfrac{1}{4}{x^2} - 5{x^2} = (1 + \dfrac{1}{4} - 5){x^2} = - \dfrac{{15}}{4}{x^2}\);
b) \({y^4} + 6{y^4} - \dfrac{2}{5}{y^4} = (1 + 6 - \dfrac{2}{5}){y^4} = \dfrac{{33}}{5}{y^4}\).
\(a,\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\\ =\dfrac{\left(x-3\right)\left(x+3\right)}{x-2}\times\dfrac{x}{x-3}\\ =\dfrac{x\left(x+3\right)}{\left(x-2\right)}\)
\(b,\dfrac{x}{z^2}.\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\\ =\dfrac{x}{z^2}.\dfrac{xz}{y^3}.\dfrac{yz}{x^3}=\dfrac{x^2yz^2}{z^2y^3x^3}=\dfrac{1}{xy^2}\)
\(c,\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}.\dfrac{x^2}{2}\\ =\dfrac{2}{x}-\dfrac{2}{x}\times\dfrac{x}{1}+\dfrac{4x^2}{2x}\\ =\dfrac{2}{x}-\dfrac{2}{1}+2x\\ =\dfrac{2-2x+2x^2}{x}\)
a) \(\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\)
\(=\dfrac{\left(x+3\right)\left(x-3\right)}{x-2}\cdot\dfrac{x}{x-3}\)
\(=\dfrac{x\left(x+3\right)}{x-2}\)
b) \(\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\)
\(=\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}\cdot\dfrac{yz}{x^3}\)
\(=\dfrac{1}{xy^2}\)
c) \(\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)
\(=\dfrac{2}{x}-\dfrac{2}{x}\cdot x+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)
\(=\dfrac{2}{x}\cdot\left(1-x+2\right)\)
\(=\dfrac{2}{x}\cdot\left(3-x\right)\)
\(=\dfrac{6}{x}-2\)
\(a,\dfrac{x+2}{x-1}-\dfrac{x-3}{x-1}-\dfrac{x-4}{1-x}\\ =\dfrac{x+2}{x-1}-\dfrac{x-3}{x-1}+\dfrac{x-4}{x-1}\\ =\dfrac{x+2-x+3+x-4}{x-1}\\ =\dfrac{x+1}{x-1}\)
\(b,\dfrac{1}{x+5}-\dfrac{1}{x-5}+\dfrac{2x}{x^2-25}\\ =\dfrac{1}{x+5}-\dfrac{1}{x-5}+\dfrac{2x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{x-5-x-5+2x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2x-10}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2}{x+5}\)
\(c,x+\dfrac{2y^2}{x+y}-y\\ =\dfrac{x\left(x+y\right)+2y^2-y\left(x+y\right)}{x+y}\\ =\dfrac{x^2+xy+2y^2-xy-y^2}{x+y}\\ =\dfrac{x^2+y^2}{x+y}\)
1) \(A=\left[x^4-\left(x-1\right)^2\right]:\left(x^2+x-1\right)-x^2+x=\left[\left(x^2-x+1\right)\left(x^2+x-1\right)\right]:\left(x^2+x-1\right)-x^2+x=x^2-x+1-x^2+x=1\)
2) \(B=\dfrac{\left(x+1\right)\left(x+2\right)+4\left(x-2\right)+2-7x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4}{x^2-4}=1\)
`a, a/(a-3) - 3/(a+3) = (a(a+3) - 3(a-3))/(a^2-9)`
`= (a^2+9)/(a^2-9)`
`b, 1/(2x) + 2/x^2 = x/(2x^2) + 4/(2x^2) = (x+4)/(2x^2)`
`c, 4/(x^2-1) - 2/(x^2+x) = (4x)/(x(x-1)(x+1)) - (2(x-1))/(x(x+1)(x-1))`
`= (2x+2)/(x(x-1)(x+1)`
`= 2/(x(x-1))`
\(a,=12x^3y-4x^2y^2+3xy^3\\ b,=x^3+3x^2-5x+3x^2+9x-15-x^3-4x^2+4x\\ =2x^2+8x-15\)
b: Ta có: \(\left(x+3\right)\left(x^2+3x-5\right)-x\left(x-2\right)^2\)
\(=x^3+3x^2-5x+3x^2+9x-15-x^3+4x^2-4x\)
\(=10x^2-15\)
a: \(=2x+x^3-5x^4\)
b: \(=\dfrac{8x^2+4x-7x-3}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{8x^2-3x-3}{\left(2x-1\right)\left(2x+1\right)}\)
\(\left(\dfrac{x}{x+1}+\dfrac{x-1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\) \(\left(đk:x\ne0;-1\right)\)
\(=\dfrac{x^2+\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}:\left(\dfrac{x^2-\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\right)\)
\(=\dfrac{x^2+x^2-1}{x\left(x+1\right)}.\dfrac{x\left(x+1\right)}{x^2-x^2+1}\)
\(=\dfrac{\left(2x^2-1\right)x\left(x+1\right)}{x\left(x+1\right)}=2x^2-1\)
a) \(\dfrac{4}{9}x + \dfrac{2}{3}x = (\dfrac{4}{9} + \dfrac{2}{3})x = (\dfrac{4}{9} + \dfrac{6}{9})x = \dfrac{{10}}{9}x\);
b) \( - 12{y^2} + 0,7{y^2} = ( - 12 + 0,7){y^2} = - 11,3{y^2}\);
c) \( - 21{t^3} - 25{t^3} = ( - 21 - 25){t^3} = - 46{t^3}\).