bài toán siêu dễ:
\(\dfrac{10^{10^{100}}}{x^{x^x}}=1\)
\(x^{x^x}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{x-4\sqrt{x}+3-x+4-10+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}-2}\)
Đặt A = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
ĐKXĐ: \(x\ne4;x\ne9;x\ge0\)
A \(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}\)
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Leftrightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}\)
\(\Leftrightarrow\frac{xy-27}{9y}=\frac{1}{18}\)
\(\Leftrightarrow18\left(xy-27\right)=9y\)
\(\Leftrightarrow18xy-486-9y=0\)
\(\Leftrightarrow2xy-y-54=0\)
......
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy-27}{9y}=\frac{1}{18}\)
\(\Rightarrow18xy-486=9y\)
\(\Rightarrow2xy-54=y\)
\(\Rightarrow2xy-y=54\)
\(\Rightarrow y\left(2x-1\right)=54\)
Dễ thấy 2x - 1 lẻ ; x, y là số tự nhiên
Xét :
(+) Với \(\begin{cases}y=54\\2x-1=1\end{cases}\)\(\Rightarrow\begin{cases}y=54\\x=1\end{cases}\)
(+) Với \(\begin{cases}y=18\\2x-1=3\end{cases}\)\(\Rightarrow\begin{cases}y=18\\x=2\end{cases}\)
(+) Với \(\begin{cases}y=6\\2x-1=9\end{cases}\)\(\Rightarrow\begin{cases}y=6\\x=5\end{cases}\)
(+) Với \(\begin{cases}y=2\\2x-1=27\end{cases}\)\(\Rightarrow\begin{cases}y=2\\x=14\end{cases}\)
Vậy \(\left(y;x\right)\in\left\{\left(54;1\right);\left(18;2\right);\left(6;5\right);\left(2;14\right)\right\}\)
Bài 1 :
7,2 x 100 = 720
8,4 x 10 = 84
9,2 x 1000 = 9200
10,3 x 10 = 103
Bài 2 :
10 x 4,5 = 45
100 x 0,27 =27
100 x 4,8 = 480
0,57 x 1000 =570
#BTr :3
`@` `\text {Ans}`
`\downarrow`
`1,`
7,2 x 100 = 720
8,4 x 10 = 84
9,2 x 1000 = 9200
10,3 x 10 = 103
`2,`
10 x 4,5 = 45
100 x 0,27 = 27
100 x 4,8 = 480
0,57 x 1000 = 570
a: \(\Leftrightarrow\left(\dfrac{x+2001}{5}+1\right)+\left(\dfrac{x+1999}{7}+1\right)+\left(\dfrac{x+1997}{9}+1\right)+\left(\dfrac{x+1995}{11}+1\right)=0\)
=>x+2006=0
=>x=-2006
b: \(\Leftrightarrow\left(\dfrac{x-15}{100}-1\right)+\left(\dfrac{x-10}{105}-1\right)+\left(\dfrac{x-100}{5}-1\right)=\left(\dfrac{x-100}{15}-1\right)+\left(\dfrac{x-105}{10}-1\right)+\left(\dfrac{x-110}{5}-1\right)\)
=>x-105=0
=>x=105
a: =>x-3=9
=>x=12
b: =>10-x=-26
=>x=36
c: =>x:4-1=2
=>x:4=3
=>x=12
d: =>x^2=4
=>x=2 hoặc x=-2
e: =>(x-2)^2=100
=>x-2=10 hoặc x-2=-10
=>x=12 hoặc x=-8
`100/x-100/(x+10)=1/2`
`<=>(100x+1000-100x)/(x^2+10x)=1/2`
`<=>1000/(x^2+10x)=1/2`
`<=>x^2+10x=2000`
`<=>x^2+10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=40,x_2=-50`
Vậy `S={40,-50}`
100x−100x+10=12100x-100x+10=12
⇔100x+1000−100xx2+10x=12⇔100x+1000-100xx2+10x=12
⇔1000x2+10x=12⇔1000x2+10x=12
⇔x2+10x=2000⇔x2+10x=2000
⇔x2+10x−2000=0⇔x2+10x-2000=0
Δ'=25+2000=2025Δ′=25+2000=2025
⇔x1=40,x2=−50⇔x1=40,x2=-50
-> S={40,−50}
Bài 1 :
a) = 98765
b) = 300657
c) 610000
Bài 2:
a) X + 77 = 1800
X = 1800 - 77
X = 1723
b) 8950 : x = 5
x = 8950 : 5
x = 1790
c) x = 8765 : 5
x = 1753
a,98765 b,300657 c,610000 Bài 2 : a, 17923 b, 1790 c, 1753
\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
⇔\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)
⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000
⇔ 7975\(x\) = 1196250
⇔ \(x\) = \(\dfrac{1196250}{7975}\)
⇔\(x \) = 150
Không có giá trị nào của \(x\) và làm cho phương trình đúng.
Không có đáp án.
\(\dfrac{10^{10^{100}}}{10^{10^{100}}}=1\)
ví dụ:
\(\dfrac{10}{10}=1\)
vậy
\(x^{x^x}=10^{10^{100}}\)