G=\(\frac{1}{1\cdot2}\)+\(\frac{2}{2\cdot4}\)+\(\frac{3}{4\cdot8}\)+\(\frac{4}{7\cdot11}\)+\(\frac{5}{11\cdot16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E=\(\frac{5}{1.2}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
E.\(\frac{1}{7}\)=\(\frac{5}{1.2.7}+\frac{4}{1.11.7}+\frac{3}{11.2.7}+\frac{1}{2.15.7}+\frac{13}{15.4.7}\)
E.\(\frac{1}{7}\)=\(\frac{5}{7.2}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
E.\(\frac{1}{7}\)=\(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
E.\(\frac{1}{7}\)=\(\frac{1}{2}-\frac{1}{28}\)
E.\(\frac{1}{7}=\frac{13}{28}\)
E=\(\frac{13}{28}:\frac{1}{7}=\frac{13}{4}\)
\(E=\frac{5}{1.2}+\frac{1}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(E=\frac{5}{2}+\frac{1}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\)
\(E=\frac{5}{2}+\left(\frac{1}{11}+\frac{3}{22}\right)+\left(\frac{1}{30}+\frac{13}{60}\right)\)
\(E=\frac{5}{2}+\left(\frac{2}{22}+\frac{3}{22}\right)+\left(\frac{2}{60}+\frac{13}{60}\right)\)
\(E=\frac{5}{2}+\frac{5}{22}+\frac{15}{60}\)
\(E=\frac{55}{22}+\frac{5}{22}+\frac{1}{4}\)
\(E=\frac{60}{22}+\frac{1}{4}\)
\(E=\frac{30}{11}+\frac{1}{4}\)
\(E=\frac{120}{44}+\frac{11}{44}\)\(=\frac{131}{44}\)
k mình nha chúc bạn học giỏi
a) A = 1/3 - 1/7 + 1/7 - 1/11 +......+1/107 - 1/111
A = 1/3 - 1/111
A = ..............Bạn tự tính nhé!
b) B = 2.(3/15.18 + 3/18.21 +........+3/87.90)
B = 2.(1/15 - 1/18 + 1/18 - 1/21 +........+1/87 - 1/90)
B = 2.(1/15 - 1/90)
B = 2.5/90
B =......Tự tính nhé!
C ; D làm tương tự nhé!
\(A=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(A=\frac{1.2.\left(1+2^2+3^2+4^2+5^2\right)}{3.4.\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1.2}{3.4}\)
\(A=\frac{1}{6}\)
Ta thấy : \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy B > A
Theo đề bài, ta có:
\(A=\frac{1\times2+2\times4+3\times6+4\times8+5\times10}{3\times4+6\times8+9\times12+12\times16+15\times20}\)
\(A=\frac{1\times2\times\left(1+2^2+3^2+4^2+5^2\right)}{3\times4\times\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1\times2}{3\times4}\)
\(A=\frac{1}{6}\)
Ta thấy rằng: \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy \(B>A\)
\(B=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{1}{2}-\frac{1}{28}\)
\(\frac{B}{7}=\frac{13}{28}\)
\(B=\frac{13}{28}.7=\frac{13}{4}\)
\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(G=1-\frac{1}{16}\)
\(G=\frac{15}{16}\)
\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(G=1-\frac{1}{16}\)
\(G=\frac{15}{16}\)