K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Ta có:

\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\)=>\(\frac{y}{12}=\frac{z}{15}\)

=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\frac{x}{8}=2\)=>x=16

   \(\frac{y}{12}=2\)=>y=24

    \(\frac{z}{15}=2\)=>z=30

Vậy x=16 ; y=24 ; z=30

13 tháng 8 2017

y/4 = z/5 => y = 4z/5

x/2 = y/3 = 4z/15 = (x + y - z)/(2 + 3 - 3,75) = 8

=> x = 16; y = 24; z = 10

14 tháng 12 2017

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=8.2=16\\y=2.12=24\\z=15.2=30\end{cases}}\)

21 tháng 7 2015

\(dat:\frac{x}{2}=\frac{y}{5}=k\)

x=2k   ;  y=5k

x.y=10k2

10 = 10k2

k= 1

k  = +-1

Voi : k=1 = > x=1.2=2 ; y=5.1=5

voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5

21 tháng 7 2015

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Ap dung tinh chat day ti so bang nhau ta co : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra  : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)

nhieu qua lam ko het

16 tháng 7 2016

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

16 tháng 7 2016

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30

2 tháng 8 2017

Ta có x/8=y/12=z/15

Theo t/c của dãy tỉ số bằng nhau , ta có

x/8=y/12=z/15=x+y-z/8+12-15=10/5=2

x/2=2 , x=4

2 tháng 8 2017

Ta cóx/2=y/3;y/4=z/5

=>x/8=y/12=z/15

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

x/8=y/12=z/15=x+y-z/8+12-15=10/5=2

=> x=16,y=24,z=30

4 tháng 10 2016

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

4 tháng 10 2016

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

26 tháng 11 2015

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

x =8.2 =16

y= 12.2 =24

z =2.15 =30

26 tháng 11 2015

áp dụng t/c dãy tỉ số bằng nhau

ta có :\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)và x+y-z=10

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=5

từ \(\frac{x}{8}\)=5 được x=5*8=40

\(\frac{y}{12}\)=5 được y=5*12=60

\(\frac{z}{15}\)=5 được z=5*15=75

5 tháng 5 2016

Ta có: x/2=y/3 --> x/8=y/12 (1)

y/4=z/5 --->y/12=z/15 (2)

Từ 1 và 2 suy ra x/8=y/12=z/15 và x+y-z=10

Asp dụng tính chất của dãy tỉ số bằng nhau ta có

x/8=y/12=z/15=x+y-z/8+12-15=10/5=2

Do đó

x/8=2 suy ra x =16

y/12=2 suy ra y =24

z/15=2 suy ra z= 30

Vậy:x=16

y=24 

z=30

5 tháng 5 2016

Theo bào ra , ta có : 

\(\frac{x}{2}=\frac{y}{3}\)=)\(\frac{x}{8}=\frac{y}{12}\) (1)

\(\frac{y}{4}=\frac{z}{5}\)=)\(\frac{y}{12}=\frac{z}{15}\) (2)

Từ (1) và (2) =) \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Ta có : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)\(\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

  • \(\frac{x}{8}\)= 2 =) x = 16
  • \(\frac{y}{12}\)=2=) y = 24
  • \(\frac{z}{15}\)=2 =) z = 30
  • Vậy x = 16 ; y = 24 ; z = 30