Xác định gtri của biểu thức để các biểu thức sau có nghĩa :
a) \(\frac{x+1}{x^2-2}\); b) \(\frac{x-1}{x^2+1}\); c) \(\frac{ax+by+c}{xy-3y}\); d) \(\frac{x-y}{2x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
Mẫu khác 0 là được
a) để biểu thức a có nghĩa thì x^2-2 khác không
=>x^2 khác 2
=> x khác cộng trừ căn 2
a
Để biểu thức có nghĩa thì \(x-2\ne0\Rightarrow x\ne2\)
b
Để biểu thức có nghĩa thì \(2x+1\ne0\Rightarrow x\ne-\dfrac{1}{2}\)
c
Ủa câu c là (x-1)/(x^2+1) đúng không bạn:v
Để biểu thức có nghĩa thì \(x^2+1\ne0\)
Vì \(x^2\ge0\forall x\Rightarrow x^2+1>0\forall x\)
Vậy biểu thức có nghĩa với mọi giá trị x.
d
Để biểu thức có nghĩa thì \(xy-3y\ne0\Leftrightarrow y\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\ne0\\x-3\ne0\Rightarrow x\ne3\end{matrix}\right.\)
Vậy để biểu thức có nghĩa thì đồng thời \(y\ne0,x\ne3\)
a) \(\dfrac{5}{x-2}\)
Có nghĩa khi:
\(x-2\ne0\)
\(\Rightarrow x\ne2\)
b) \(\dfrac{x-y}{2x+1}\)
Có nghĩa khi:
\(2x+1\ne0\)
\(\Rightarrow2x\ne-1\)
\(\Rightarrow x\ne-\dfrac{1}{2}\)
c) \(\dfrac{x-1}{x^2+1}\)
Có nghĩa khi:
\(x^2+1\ne0\)
\(\Rightarrow x^2\ne-1\) (luôn đúng)
Vậy biểu thức được xác định với mọi x
d) \(\dfrac{ax+by+c}{xy-3y}=\dfrac{ax+by+c}{y\left(x-3\right)}\)
Có nghĩa khi:
\(y\left(x-3\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x\ne3\end{matrix}\right.\)
\(A=\sqrt{1-4x}\)
A có nghĩa khi:
\(1-4x\ge0\)
\(\Leftrightarrow4x\le1\)
\(\Leftrightarrow x\le\dfrac{1}{4}\)
Vậy A có nghĩa khi \(x\le\dfrac{1}{4}\)
a, Để C có nghĩa <=> \(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne2\\2x^2\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)\(\Leftrightarrow x\ne\pm1\) thì C có nghĩa.
b, \(\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}=\dfrac{x}{2\left(x-1\right)}+\dfrac{-\left(x^2+1\right)}{2\left(x^2-1\right)}\)
\(=\dfrac{x}{2\left(x-1\right)}+\dfrac{-\left(x^2+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{-\left(x^2+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
c, \(C=-0,5\Leftrightarrow\dfrac{1}{2\left(x+1\right)}=-0,5\)
\(\Leftrightarrow2\left(x+1\right)=\dfrac{1}{-0,5}=-2\Leftrightarrow x+1=-1\Leftrightarrow x=-2\)
Vậy....
a) \(x\ne+-\sqrt{2}\)
b) mọi giá trị của x đều có nghĩa vì \(x^2+1\ge1\)
c) \(xy-3y\ne0\Rightarrow y\left(x-3\right)\ne0\Rightarrow y\ne0;x\ne3\)
d) \(x\ne\frac{1}{2}\)