47. Cho sin x = 12/13 90 ^ o < x < 180 ^ o . Tính E = (6tan x + sin x)/(2cos x - cot x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= cos \(_{^{ }\beta}\).cos\(\beta\).(-cot\(\beta\)) vậy dấu của A là dấu trừ
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP
Thôi vậy
TA có
sin^2 x + cos^2 x = 1
Thay sin x = 3 cos x ta có :
9 cos ^2 x + cos ^2 x = 1
=> 10 cos ^2 x = 1
=> cos ^2 x = 1/10
=> cos x = 1/ căn (10)
=> sin x = 3/ căn (10)
câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)
\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)
\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)
tới đây mk xin sử dụng kiến thức lớp 10 một chút
\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)
vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .
câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)
câu 2 : https://hoc24.vn/hoi-dap/question/657072.html
câu 3 : https://hoc24.vn/hoi-dap/question/657069.html
câu 4 : https://hoc24.vn/hoi-dap/question/656635.html
câu 5 : https://hoc24.vn/hoi-dap/question/657071.html
\(VT=\dfrac{sin^2x+\left(1+cosx\right)^2}{sinx\left(1+cosx\right)}\)
\(=\dfrac{sin^2x+1+cos^2x+2cosx}{sinx\left(1+cosx\right)}\)
\(=\dfrac{2\left(cosx+1\right)}{sinx\left(cosx+1\right)}=\dfrac{2}{sinx}\)
\(A=s\left(x\right)cs\left(x\right)+\frac{\left(s^3\left(x\right)+cs^3\left(x\right)\right)}{cs\left(x\right)\left(1+t\left(x\right)\right)}=s\left(x\right)cs\left(x\right)+\left(\frac{\left(s\left(x\right)+cs\left(x\right)\right)\left(1-s\left(x\right)cs\left(x\right)\right)}{\left(s\left(x\right)+cs\left(x\right)\right)}\right)\)
\(=1\) vì \(s\left(x\right)+cs\left(x\right)\ne0,\forall0< =x< =\frac{\pi}{2}\)
điều kiện xác định \(cotx;sinx\ne0\)
ta có : \(\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{sinx.cosx}{cotx}=\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{cos^2x}{cot^2x}\)
\(=\dfrac{cot^2x-cos^2x+cos^2x}{cot^2x}=\dfrac{cot^2x}{cot^2x}=1\) (không phụ thuộc vào \(x\)) (đpcm)
90 độ<x<180 độ
=>cosx<0
=>\(cosx=-\sqrt{1-\left(\dfrac{12}{13}\right)^2}=-\dfrac{5}{13}\)
\(tanx=\dfrac{12}{13}:\dfrac{-5}{13}=-\dfrac{12}{5}\)
\(E=\dfrac{6\cdot\dfrac{-12}{5}+\dfrac{12}{13}}{2\cdot\dfrac{-5}{13}+\dfrac{5}{12}}=\dfrac{-\dfrac{72}{5}+\dfrac{12}{13}}{-\dfrac{10}{13}+\dfrac{5}{12}}=\dfrac{10512}{275}\)